• Title/Summary/Keyword: Continuous Friction Welding

Search Result 7, Processing Time 0.02 seconds

Friction Weldability of Grey Cast Iron - by the Concept of Friction Weld Heat Input Parameter - (회주철의 마찰용접 특성에 관한 연구 - 입열량 이론식을 중심으로 -)

  • Jeong, Ho-Shin;Bang, Kook-Soo
    • Journal of Welding and Joining
    • /
    • v.32 no.3
    • /
    • pp.95-101
    • /
    • 2014
  • Joining of grey cast iron by fusion welding has much difficulties for its extremely low ductility and low toughness because of the flake form of the graphite. And the brittle microstructure, i.e. ledeburite may be formed during fusion welding by its rapid cooling rates. By these kinds of welding problem, preheat and post heat treatment temperature must be increased to avoid weld crack or welding problems. In order to avoid these fusion welding problem, friction welding of cast iron was carried out for improving joint soundness, establishing friction welding variables. There is no factor for evaluating friction weldability in continuous drive type friction welding. In this point of view, this study proposed the parameters for calculating friction weld heat input. The results obtained are as follows ; 1. There was a close relationship between tensile strength and flash appearance of friction welded joint. 2. Tensile strength was decreased and flash was severely oxidized as increasing frictional heating time. 3. As increased forging pressure $P_2$, flash had a large crack and tensile strength was decreased. 4. As powdered graphite by rotational frictional force induced flat surface and hindered plastic flow of metal, tensile strength of welded joint was decreased. 5. Heat input for continuous drive type friction welding could be calculated by the factors of $P_1$, $P_2$ and upset distance(${\delta}$).

A study on welding structure and thermal behavior in friction welding of austenitic stainless steel (오스테나이트계 스테인레스강의 마찰압접시 압접조직과 열적거동에 관한 연구)

  • 강춘식;정태용
    • Journal of Welding and Joining
    • /
    • v.8 no.1
    • /
    • pp.43-53
    • /
    • 1990
  • The transient temperature distribution in the continuous friction welding 304 stainless steel bars is investigated by experimental and analytical methods. It is calculated by F.D.M. (finite difference method). The heating pressure, the rotational speed and friction coefficient obtained from experiment are used to determine the heat input at the contacting surface. Thermal properties of the workpiece are the function of temperature. The calculated temperature is well coincided with the measured value. The grain size at weld interface is extremely small due to the severe plastic deformation at high temperature, and result of this refined zone reveals higher hardness value. Because the HAZ is very narror about 2-3 mm, welding defects do not occure.

  • PDF

Friction Welding of Inconel 713C and SCM 440 (Inconel 713C와 SCM 440의 마찰용접)

  • 조현수;서성재
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.78-84
    • /
    • 1997
  • Friction welding technique was studied to weld the turbine wheel and shaft of a turbocharger. The welding parameters were selected to investigate the effects of variables on welding quality of Inconel 713C and SCM 440. Experimental results showed that the turbine wheel and shaft could be successfully welded by friction welding. The heat affected zone was identified to be 2 mm from the weld seam. After welding, the hardness profile was found to have sudden increase and decrease for inconel 713C and SCM 440 respectively. Tensile strength of welded specimens was higher than the required strength for all of the studied welding parameters. The central portion of fracture surfaces by bending had no defects such as crack.

  • PDF

Optimal Welding Condition of Dissimilar Friction Welded Materials and Its Real Time Evaluation by Acoustic Emission (이종마찰용접재의 최적용접조건과 음향방출에 의한 실시간 품질평가)

  • Kong, Yu-Sik;Lee, Jin-Kyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.191-199
    • /
    • 2019
  • In this paper, dissimilar friction welding were produced using 15 mm diameter solid bar in chrome molybedenum steel(SCM440) to stainless steel(STS316L) to investigate their mechanical properties. Consequently, optimal welding conditions were n=2000 rpm, HP=70 MPa, UP=140 MPa, HT=10 sec and UT=10 sec when the metal loss(Mo) is 8.6 mm. In addition, an acoustic emission technique was applied to evaluate the optimal friction welding condition. AE parameters including the cumulative count, amplitude and energy showed a various changes according to the friction condition. A continuous type waveforms and low frequency spectrum was presented in friction time. On the other hand, a burst type waveform and high frequency spectrum was exhibited in pressing time.

A study on friction welding of 2024 aluminium (2024 알루미늄의 마찰용접에 관한 연구)

  • 송오성;강춘식
    • Journal of Welding and Joining
    • /
    • v.8 no.3
    • /
    • pp.24-30
    • /
    • 1990
  • 2024 Aluminium was welded by domestic manufactured continuous type friction welder. The problems and optimum condition were studied in 2024 Al-2024 Al cases. Mechanical tests and microstructure analysis were studeid. Interfacial temperature of welding was predicted by FDM. The obtained results are as follows: 1) In case of Al-Al, the optimum condition range was wide. 2) At the boundary zone, fine recrystallized zone was not harmful to the mechanical property and no growth of precipitation was observed. 3) In case of Al-Al, temperature gradient can be predictedby FDM and heat input can be taken as weld parameter.

  • PDF

DEVELOPMENT OF THE JOINING PROCESSES IN A GLOBAL PERSPECTIVE

  • Pekari, Bertil
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.1-14
    • /
    • 2002
  • There is a continuous development of the most common welding processes like MMA, MIG/MAG, PAW and SAW. At the same time there is a conversion from stick electrodes to solid and cored wires with an increased productivity as a result. In parallel with these changes new processes are introduced and implemented. The number of Friction Stir Welding installations is starting to grow fast Hybrid laser welding has probably made a technical break through. The Magnetic Pulse Welding process is taking off. The different mechanical joining methods; clinching and self-piercing riveting; must not be forgotten. Structural adhesive is another method to consider.

  • PDF

Effect of Tool Shape and Insertion Depth on Joining Properties in Friction Stir Spot Welding of Aluminum Alloy/high-strength Steel Sheets (알루미늄 합금/고장력 강판 겹치기 마찰교반점용접에서 공구 형상과 삽입 깊이에 따른 접합 특성)

  • Su-Ho An;Young-Keun Jeong
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.37-42
    • /
    • 2024
  • Friction stir spot welding (FSSW) is a solid-state joining process and a rapidly growing dissimilar material welding technology for joining metallic alloys in the automotive industry. Welding tool shape and process conditions must be appropriately controlled to obtain high bonding characteristics. In this study, FSSW is performed on dissimilar materials AA5052-H32 aluminum alloy sheet and SPRC440 steel sheet, and the influence of the shape of joining tool and tool insertion depth during joining is investigated. A new intermetallic compound is produced at the aluminum and steel sheets joint. When the insertion depth of the tool is insufficient, the intermetallic compound between the two sheets did not form uniformly. As the insertion depth increased, the intermetallic compound layer become uniform and continuous. The joint specimen shows higher values of tensile shear load as the diameter and insertion depth of the tool increase. This shows that the uniform formation of the intermetallic compound strengthens the bonding force between the joining specimens and increases the tensile shear load.