• Title/Summary/Keyword: Continuous Forming

Search Result 266, Processing Time 0.032 seconds

A Study on the Effects of Products Section by Cutting Punch's Edge Angle during Roll Forming Process (롤 포밍 공정에서 컷팅 펀치 인선 각도가 제품 절단에 미치는 영향에 관한 연구)

  • Cheong, Mun-Su;Kim, Sei-Whan;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.10 no.2
    • /
    • pp.44-49
    • /
    • 2016
  • The roll forming produces mass products using the continuous production process. Also we need the process that continuous long material or goods cutting into a desired length. Our study uses 3-D driving cutter and roll forming material as SPCC to investigate this. When we cut the material using the process of roll forming, the shear resistance is raised at the cutting punch's edge. The result is remained the trouble about burr and progressive deformation on the material. This study shows the method minimizing the above trouble. The material of punch was considering heat generated on the continuous production process. So we used the type of STD 61 for the material of punch and had the vacuum heat treatment for the surface hardness of HRC 53. The structure of the mold is designed with forming a double cam die at the upper punch and the both sides of central core. We conducted the experiment three times. In the result when had to make V-groove within the angle between 105 and 110 on the punch front end, we could get the minimum shear resistance on the punch front end. Also with the same condition we minimizes the material jams in the continuous production process.

A Study On the $Conform^{TM}$ Process of Al 1100 Alloy (Al 1100 합금의 $Conform^{TM}$ 공정에 관한 연구)

  • Kim, S.H.;Han, S.S.;Han, C.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.329-332
    • /
    • 2006
  • $Conform^{TM}$, a continuous extrusion forming process can produce a variety of very long extruded products such as aluminum alloyed wires, strips and profiles, hollow sectioned tubes, coated wires used in the current forming industry. This process has some advantages like as superiority of pre-heating free, availability of high extrusion ratio and continuous forming without stroke limit. But it is still difficult to analyze the realistic model of the process. In this study the analysis using two-dimensional model of $Conform^{TM}$ process together with several parametric investigations on the heat transfer are carried out by FEA code DEFORM $^{TM}2D$. In spite of simple model the results of analysis shows a good guidance to design the real process.

  • PDF

Effect of Cold Forming Method on Drawability Trunk Floor Panel (냉각성형공법이 트렁크 플로어 드로잉성에 미치는 영향)

  • 최치수;최이천;오영근;이정우;이항수
    • Transactions of Materials Processing
    • /
    • v.10 no.2
    • /
    • pp.123-129
    • /
    • 2001
  • This study is to investigate the effects of cold forming method with steel sheet of SCP3C to improve continuous productivity. Experiments were carried out in various working conditions, such as the number of stamping and the punch temperature. The effects of the punch temperature and the number of stamping on drawability of steel sheet of SCP3C as well as clearance and draw-in in the number of stamping were examined and discussed. More improvement of continuous productivity in case of cold stamping rather than by conventional stamping at room temperature is obtained. The optimum forming condition for drawing trunk floor panel of SCP3C is shown as the punch is cooled by coolant of $-5^{\circ}C$ and at the same time both the die and the blankholder are heated by stamping and frictional heat.

  • PDF

Finite Element Analysis of the Unconstrained Cylindrical Bending Process Considering Continuous Contact Treatment (연속 접촉 처리를 고려한 실린더 벤딩 성형 공정의 유한요소해석)

  • Kim T. J.;Yang D. Y.
    • Transactions of Materials Processing
    • /
    • v.14 no.6 s.78
    • /
    • pp.547-552
    • /
    • 2005
  • In general, the sheet metal and die are described by finite elements for the simulation of the metal forming processes. Because the characteristics as continuum of the sheet metal are represented with triangles and rectangles, the errors occur inevitably in finite element analysis. Many contact schemes to describe the deformation modes exactly have been introduced in order to decrease these errors. In this study, a scheme for continuous contact treatment is proposed in order to consider the realistic behavior of contact phenomena during the forming process. The discrete mesh causes stepwise propagation of contact nodes of the sheet even though the contact region of the real forming process is altered very smoothly. It gives rise to convergence problem in case that the process, for example bending process, is sensitive to the contact between the sheet and the tools. The analysis of the unconstrained cylindrical bending process without blank holder is also presented in order to investigate the effect of the proposed algorithm.

A study on the cutting punch shape about roll forming process (롤 포밍 공정에서 컷팅 펀치 형상에 관한 연구)

  • Cheong, Mun-Su
    • Design & Manufacturing
    • /
    • v.10 no.3
    • /
    • pp.34-38
    • /
    • 2016
  • Roll forming is a continuous production process that is mass-produced. The roll forming process is produced in various forms. The special feature of roll forming is a continuous production. Therefore, the process of cutting the material is essential. The troubles in a shearing process affects the low productivity. Accordingly, it is important to reduce the factors that inhibit the material flow. And it is difficult to apply the common shear angle. Because it is not a simple forms, such as a progressive die. This study shows how to select the angle of a shear punch and the shape of a cutting punch in the product with a specific shape. Conclusively through three different model, it is advantageous to apply the different shear angle and clearance along the forms.

Effect of Cold Forming Method on Drawability in Trunk Floor Panel (냉각성형공법이 트렁크 플로어 드로잉성에 미치는 영향)

  • Choi C. S.;Choi Y. C.;Park J. H.;Oh Y. K.;Lee J. W.;Lee H. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.113-119
    • /
    • 2000
  • This study is to investigate the effects of cold forming method with steel sheet of SCP3C to improve continuous productivity. Experiments were carried out in various working conditions, such as the number of stamping and the punch temperature. The effects of the punch temperature and the number of stamping on drawability of steel sheet of SCP3C as well as clearance and draw-in in tile number of stamping were examined and discussed. The cooled the punch and the die and the blankholder heated by stamping were achieved at continuous productivity and quality improvement. The optimum forming condition for drawing trunk floor panel of SCP3C is shown as the punch is cooled by coolant of $-5^{\circ}C$ and at the same time both the die and the blankholder are heated by stamping and frictional heat,

  • PDF

Development of Forged Piston for Weight-Reduction (경량 단조 피스톤 기술 개발)

  • Hong, Eunji;Kang, Heesam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.111-115
    • /
    • 2017
  • This forged piston is proposed with a lighter weight and higher durability than a gravity casting piston for gasoline engines. However, a forged piston is very difficult to develop and mass-produce due to lack of basic technologies such as design, material and forging technique. First, we benchmarked existing forged pistons according to database design parameters. Second, we evaluated two solidification processes, continuous casting and spray forming, to produce heat-resistant alloy billets for forging. The spray forming process gives better mechanical properties at all temperatures, particularly at elevated temperatures except when poor formability is present. We used DEFORM simulation to determine the optimum process condition with billet from spray forming and successfully commercialized it with LF Sonata HEV.

Development of Forming Equipment Using Electromagnetic Lorentz Force (전자기 로렌쯔력을 이용한 성형장비 개발)

  • Lee, H.M.;Ku, J.K.;Noh, H.G.;Song, W.J.;Ku, T.W.;Kang, B.S.;Kim, J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.313-317
    • /
    • 2009
  • Electromagnetic forming(EMF) is a high-velocity forming process which uses electromagnetic Lorentz force. Advantages of this forming technique are improved formability, reduction in wrinkling, non-contact forming and applications of various forming process. But the application of electromagnetic forming technique is still limited in industry. Thus for continuous research and development of technique based on experiments, develop the forming equipment and carry out the forming experiments for validation of forming equipment.

  • PDF

Manufacture of Doubly Curved Sheet Metals Using the Incremental Roll Forming Process and Prediction of Formed Shapes for Precision Forming (점진적 롤 성형공정을 이용한 이중곡률의 금속판재 제작 및 정밀성형을 위한 형상 예측)

  • 윤석준;양동열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.95-102
    • /
    • 2004
  • A flexible incremental roll forming process has been developed by adopting the advantages of the incremental forming process and the roll forming process: i.e., inherent flexibility of the incremental forming process and continuous bending deformation of the roll forming process. It has an adjustable roll set as a forming tool composed of one upper center roll and two pairs of lower support rolls, which plays a key role during forming process. Through the experiments based on the various combinations of process parameters, it is shown that the incremental roll forming process is so effective as to manufacture various doubly curved sheet metals including concave-convex combination shapes in which there exists a line of inflection. The proposed relationship of the experimental parameters and the radius of curvature of the formed sheet boundary is found to be useful in prediction and control of the final shape.