• Title/Summary/Keyword: Continuous Cell Separation

Search Result 28, Processing Time 0.026 seconds

A Continuous Cell Separation Chip Using Hydrodynamic Dielectrophoresis Process (유체동역학적 유전영동법을 이용한 극소형 연속 세포분리기)

  • Doh Il;Cho Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.53-58
    • /
    • 2005
  • We present a high-throughput continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. The continuous cell separation chip uses three planar electrodes in a separation channel, where the positive DEP cells are moved away from the central streamline while the negative DEP cells remain in the central streamline. In the experimental study, we use the mixture of viable (live) and nonviable (dead) yeast cells in order to obtain the continuous cell separation conditions. For the conditions of the electric fields frequency of 5MHz and the medium conductivity of $5{\mu}S/cm$, the fabricated chip performs a continuous separation of the yeast cell mixture at the varying flow-rate in the range of $0.1{\sim}{\mu{\ell}/min$.; thereby, resulting in the purity ranges of $95.9{\sim}97.3\%\;and\;64.5{\sim}74.3\%$ respectively for the viable and nonviable yeast cells. present chip demonstrates the constant cell separation performance for varying mixture flow-rates.

A Study on Separation Mechanisms in Tangential Flow Membranes (접선류 방식의 막분리 공정에 있어서 분리기구 해석에 관한 연구)

  • 이기정;허병기목영일
    • KSBB Journal
    • /
    • v.4 no.3
    • /
    • pp.281-287
    • /
    • 1989
  • The experimental study reported herein was to investigate to separation characteristics of a tangential flow membrane in a continuous recycle situation. Physical and dynamic analyses are performed on the membrane system in order to relate relevant variables to the capacity of separation. The results of separation process may be summarized by a proposed equation:Sh=A(Re.Sc.dh/L)1/3. It was shown also by the analyses that effective separation of sugar and cell was attainable by means of tangential membranes, thereby enhancing ethanol productivity in fermentation with continuous cell and substrate recycle.

  • PDF

Automated Wafer Separation from the Stacked Array of Solar Cell Silicon Wafers Using Continuous Water Jet

  • Kim, Kyoung-Jin;Kim, Dong-Joo;Kwak, Ho-Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.21-25
    • /
    • 2010
  • In response to the industrial needs for automated handling of very thin solar cell wafers, this paper presents the design concept for the individual wafer separation from the stacked wafers by utilizing continuous water jet. The experimental apparatus for automated wafer separation was constructed and it includes the water jet system and the microprocessor controlled wafer stack advancing system. Through a series of tests, the performance of the proposed design is quantified into the success rate of single wafer separation and the rapidity of processing wafer stack. Also, the inclination angle of wafer equipped cartridge and the water jet flowrate are found to be important parameters to be considered for process optimization. The proposed design shows the concept for fast and efficient processing of wafer separation and can be implemented in the automated manufacturing of silicon based solar cell wafers.

Continuous Cultivation of Lactobacillus rhamnosus with Cell Recy-cling Using an Acoustic Cell Settler

  • Yang, Yun-Jeong;Hwang, Sung-Ho;Lee, Sang-Mok;Kim, Young-Jun;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.357-361
    • /
    • 2002
  • Continuous production of lactic acid from glucose by Lactobacillus rhamnosus with cell recycling using an acoustic cell settler was carried out. The performance of the system, such as the concentration of cell and product were compared with the control experiment without recycling. The acoustic settler showed cell separation efficiency of 67% during the continuous operation and the cell concentration in the fermentor with recycle exceeded that of the control by 29%. Com-pared with the control, tactic acid production was increased by 40%, while glucose consumption was only increased by 8%. The higher value of lactic acid production to substrate consumption (Yp/s, product yield coefficient) achieved by cell recycling is interpreted to indicate that the recycled cell mass consumes less substrate to produce the same amount of product than the control Within system environmental changes due to the longer mean cell residence time induced the cells maintaining the metabolic pathways to produce Less by-Product but more product, lactic acid.

Development of Soluble Glucan Production Process with Continuous Stirred Tank Fermentor (연속 발효조를 이용한 soluble glucan 생산 공정 개발)

  • Moon, Chan-Jun;Lee, Jung-Heon
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.938-941
    • /
    • 2006
  • Continuous fermentation process for the production of soluble glucan using mutant Agrobacterium sp. ATCC31750 has been developed in this research. When the concentration of soluble glucan was higher than 6 g/l, the viscosity of the fermented broth was too high and it needs complex separation process to separate from culture broth. Mathematical models which describe the cell growth and glucan production was developed and they kinetic parameters were estimated with experimental data. They are used for the optimization of continuous fermentation process and calculate optimal dilution rate for easy separation of glucan 4 g/l. With continuous fermentation, glucan production rate was increased 1.8 times more than that with batch fermentation.

Separation and Characterization of Dust and Ground Water Particulates Using Gravitational SPLITT Fractionation.

  • Lee, Seung Ho;Park, Hui Yeong;Lee, Sang Geun;Yong, Seong Gwon;Eum, Cheol Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.6
    • /
    • pp.616-622
    • /
    • 2001
  • Split-flow thin (SPLITT) cell Fractionation(SF) is a technique that allows separation of particulates and macromolecules into two fractions. A gravitational SF(GSF) system is constructed and tested for its applicability for separation of dust and ground water particulates. When tested with polystyrene latex particles, experimental data were in good agreements with theory. The 9.8 and 21.4㎛ polystyrene particles were successuflly separated in a continuous mode, where the mixture is continuously fed into the GSF channel allowing separation in a large sacle. The GSF system is successfully applied to continuous separation of dust and ground water particels based on the sedimentation coefficient, which is closely related to the particle size. The separations were confirmed by microscopy and energy-dispersive X-ray (EDX) analysos.

Continuous Alcohol Fermentation by a Tower Fermentor with Cell Recycle Using Flocculating Yeast Strain (Flocculating 효모균주의 재순환에 의한 Tower 발효조를 이용한 연속알콜발효)

  • 페차랏칸자나시리완;유연우김공환
    • KSBB Journal
    • /
    • v.4 no.1
    • /
    • pp.11-14
    • /
    • 1989
  • A study on the continuous fermentation with cell recycle by a tower fermentor to produce ethanol has been carried out. ethanol fermentation was conducted with flocculating yeast strain, Saccharomyces cerevisiae TS4, to compare the ethanol productivity with conventional continuous process. Employing a 15% glucose feed, a cell density of 50 g/l was obtaind. The ethanol productivity of the cell recycle system was found to be 26.5g EtOH/1-hr, which was nearly 7.5 times higher than the conventional continuous process without cell recycle. A cell recycle ratio of 7 to 8 resulted in the highest ethanol productivity and cell concentration. Thus the cell recycle ratio was found to be a key factor in controlling the production of clarified overflow liquid. An aeration rate above 3.8 $\times$ 10-3 VVM seemed to decrease the ethanol productivity. The continuous fermentation with cell recycle was successfully used in the separation of cells from fermentation broth with enhancement of mixing in the tower fermentor.

  • PDF

Dielectrophoretic separator for Airborne Microbes (전기 영동을 이용한 공기 중 미생물 분리)

  • Moon, Hui-Sung;Nam, Yun-Woo;Park, Jae-Chan;Jung, Hyo-Il
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1683-1684
    • /
    • 2008
  • For direct detection of microbes in air, samples have to be collected but environmental particles such as dust are also trapped in such samples. Therefore the isolation of target bacteria from non-biological materials of similar size is of great importance in the identification of such organisms. Dielectrophoresis is an emerging technique that can rapidly separate cells in microfluidics. In this paper we proposed a new method for the separation of airborne microbes using condensation and dielectrophoresis. This system could be used as a continuous flow through separation system for various particles and utilized as a pretreatment technique for microbe detection.

  • PDF

Production of an Anticoagulant Hirudin by Fed-batch and Continuous Cell Recycle Fermentations Using Recombinant Saccharomyces cerevisiae (유가식과 세포재순환 연속공정을 이용한 항혈전제 hirudin의 생산)

  • 최치민;김명동;이상기;서진호
    • KSBB Journal
    • /
    • v.13 no.4
    • /
    • pp.456-460
    • /
    • 1998
  • Fed-batch fermentations were carried out in order to improve the efficiency of hirudin production by recombinant Saccharomyces cerevisiae. A fed-batch fermentation done with the optimized semi-synthetic medium resulted in a maximum hirudin concentration of 342mg/$\ell$ by keeping a galactose concentrations between 10 and 30g/$\ell$ which corresponded to a 11.4-fold increase in hirudin concentration compared with the simple bach fermentation done with the same medium. Comparison of the chromatographic pattern of proteins in the growth medium clearly showed that the use of the semi-synthetic medium is more advantageous for separation of hirudin than the case o fusing the complex medium. Continuous cell recycle fermentation done at dilution rate of 0.1h-1 and an inlet galactose concentration of 100g/$\ell$ yielded a maximum hirudin productivity of 19.1mg hirudin/$\ell$$.$h.

  • PDF

Continuous Foam Separation of Yeast Cells (효모의 연속 포말 분리)

  • 서근학;심현과윤종원
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.46-51
    • /
    • 1996
  • Cell separation by means of continuous foam separation of Saccharomyes formosensis without additive was investigated. The yeast separation ratio was improved at low feed rates, high nitrogen rates, optimum pH and temperature for ethanol production, dilution of cultivation medium and addition of 0.5g/$\ell$ $CaCl_2$. Percentage of yeast removal and yeast separation ratio were more than 85 when continuous foam separation was operated in optimum condition..

  • PDF