• Title/Summary/Keyword: Continuous Casting

Search Result 242, Processing Time 0.021 seconds

Large Eddy Simulation of Fluctuating Mold Level - Effects of Nozzle Geometry on Oscillation Frequency (LES를 이용한 몰드 내 탕면 변동 거동 수치해석 - 노즐 형상에 따른 진동 주파수 분석)

  • Lee, Kyongjun;Yang, Kyung-Soo;Cho, Myung Jong;Hwang, Jong-Yeon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.129-135
    • /
    • 2012
  • High speed casting technology is an attractive method to increase the productivity of continuous casting. However, high speed casting causes flow instability of molten steel in a mold. In this study, Large Eddy Simulation (LES) has been performed to identify the characteristics of mold flow for various shapes of submerged entry nozzles. The LES code has been newly developed to efficiently compute the two-phase flow by using the Fractional Step Method (FSM) combined with the Volume of Fluid (VOF) method. The Immersed Boundary Method was used to implement the shape of the submerged entry nozzle. Three cases of discharge angle of the submerged entry nozzle were computed and compared. The current results shed light on improving shape design of a submerged entry nozzle.

Three-dimensional Numerical Modeling of Fluid Flow and Heat Transfer in Continuously Cast Billets (연속주조 빌렛의 3차원 열 및 유동해석)

  • Lee, Sung-Yoon;Lee, Sang-Mok;Park, Joong-Kil;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.20 no.5
    • /
    • pp.290-299
    • /
    • 2000
  • A three-dimensional model was developed in order to simulate heat and fluid flow of a continuous casting billet. The model was coded with the general-purpose CFD program FIDAP, using the finite element method. The present model consists of 2 individual calculation schemes, named model 1 and model 2. Mold region only was calculated to check the pouring stream through submerged nozzle with model 1. Entire region, which consists of mold, secondary cooling, radiation cooling was calculated to predict crater end position, temperature profile and solid shell profile(model 2). Standard $k-{\bullet}\hat{A}$ turbulence model has been applied to simulate the turbulent flow induced by submerged nozzle. Enthalpy method was adopted for the latent heat of solidification. Fluid flow in mushy zone was treated using variable viscosity approach. The more casting speed and superheat increased, the more metallurgical length increased. The shell thickness at the mold exit is proved to be mainly controlled by superheat by the present simulation. It may be concluded that the present model can be successfully applied far the prediction of heat and fluid flow behavior in the continuous casting process.

  • PDF

An Assessment on the Formation of Oscillation Mark of the Continuously Casted Steel Slabs (연속주조된 강재 슬래브 표면의 Oscillation Mark 형성에 관한 평가)

  • Park, Tae-Ho;Kim, Ji-Hun;Choi, Joo;Ye, Byung-Joon
    • Journal of Korea Foundry Society
    • /
    • v.23 no.5
    • /
    • pp.257-267
    • /
    • 2003
  • In early solidification during the continuous casting of steel slabs, the formation of oscillation marks on the surface of slabs was mainly affected by carbon contents and casting conditions. The control of oscillation mark is required for the HCR(Hot Charged Rolling) process because the deep oscillation marks seriously deteriorate the surface qualities of steel slabs. The metallographic study has revealed that the oscillation mark can be classified principally according to the presence or absence of a small 'subsurface hook' and the depth of the oscillation marks in the subsurface structure at the basis of individual oscillation marks. The subsurface hook of oscillation marks was either straight or curved. When the amount of overflow was small and the subsurface hook was formed in the top of oscillation marks, the subsurface hook was straight and the oscillation mark was shallow. The oscillation marks without subsurface hook have small early solidification shell and were formed wide. The actual negative strip time$(t_N)$ was changed by the effect of meniscus level fluctuation Therefore irregular early solidification shell and oscillation mark were formed.

Robust Design of the Mold Oscillator of continuous Casting Machine (연주 설비용 몰드 오실레이터의 강건 설계)

  • Park, Y. T.;Lee, C. S.;Hwang, W.;Kang, G. P.;Shin, G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.782-785
    • /
    • 2002
  • The goal of this research is to deduce the robust design of mold oscillator of the continuous casting machine. In the case of the system operated in the high temperature condition, the structural problems caused by the heat are dominant. Therefore, the thermal stress is considered with the connection of the thermal and structural analyses. The cooling ability of the water jacket was estimated and the robustness of mold oscillator was judged with the displacement and stress distributions obtained by the finite element method. The analytic results were compared with the real values of the iron mill.

  • PDF

Microstructure and Characteristics of SiCp/Al-4.5wt%Cu-1wt%Mg Composites by Pressurized Continuous Compo-Casting (가압연속주조법에 의한 SiCp/Al 합금기 복합재료의 조직 및 특성)

  • Lee, Hak-Joo;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.11 no.1
    • /
    • pp.71-78
    • /
    • 1991
  • Microstructure and characteristics of the SiCp/Al-4.5wt%Cu-1wt%Mg composites fabricated by the combination of the compocasting and the pressurized continuous casting process, which is one of the processes to decrease the limitations of the size, and shops of the products, are investigated. The main results are as follows: 1) the SiCp/Al alloy matrix composites can be made continuously 2) as the amount of SiCp addition increases; (1) the degree of directional solidification of matrix structure decreases, and that of SiCp dispersion improves, (2) wear resistance improves, and especially these composites show the excellent wear resistance under the high sliding speed and high final load condition, (3) wear mechanism of these composites is changed from adhesive wear into abrasive wear, and the tendency of that becomes outstanding with increasing sliding speed.

  • PDF

The Power Analysis and Its Control of Two-phase Orthogonal Power Supply for the Continuous Casting

  • Ma, Fujun;Luo, An;Xiong, Qiaopo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.971-982
    • /
    • 2015
  • In order to improve the quality of the billet continuous casting, a two-phase orthogonal power supply (TPOPS) for electromagnetic stirrer is researched, which is composed of three-phase PWM rectifier and three-leg inverter. According to the power analysis of system, the ripple of dc-link voltage is analyzed and its analytical expression is derived. In order to improve the performance of electromagnetic stirring, an integrated control method with feedforward control is proposed for PWM rectifier to suppress the fluctuations of dc-link voltage and provide a stable dc source for inverter. According to the simplified equivalent model, a composite current control method is proposed for inverter. This proposed method can combine the merits of feedforward control with feedback control to effectively improve the dynamic output performance of TPOPS. Finally, a 300kVA prototype of TPOPS is developed, and the results have verified the analysis and control method.

Crystal Growth of Al-Cr and Al-Ti Peritectic Alloys by the Upward Continuous Casting Proces (상향식 연속주조법에 의한 Al-Cr 및 Al-Ti 2원계 포정합금의 결정성장)

  • Baeck, Seoung-Yil;Choi, Jong-Cheol;Shin, Hyun-Jin;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.12 no.3
    • /
    • pp.203-209
    • /
    • 1992
  • Directional solidification of Al-Ti peritetic alloys was carried out using Upward Continuous Casting Process. The morphology of a solid-liquid interface and solidification microstructures were investigated under various crystal growing conditions. The experimental results were compared with those attained by the Bridgman method. The cell spacing of the Al-Ti peritetic alloys and the primary dendrite arm spacing of the Al-Ti peritetic alloys decreased with an increase in pulling speed. The primary ${\beta}$ phase of the Al-Cr and Al-Ti peritectic alloys did not appear in solidification microstructures because of the depleted solute contents in the melt ahead of the solid-liquid interface.

  • PDF

Continuous Fabrication Process of Rheology Material by Rotational Barrel Equipment (회전식 바렐 장치에 의한 레올로지 소재의 연속 제조 공정)

  • Seo P. K.;Jung Y. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.103-106
    • /
    • 2004
  • The new rheology fabrication process has been developed to rheo die casting and rheo forming process. Thixoforming process has disadvantages in terms of induction reheating process, scrap recycling, loss of raw material and cycle time. Therefore, to reduce the number of process, new rheology fabrication process with specially designed the rotational barrel type equipment has been proposed to apply in various part productions. The barrel type equipment, which could continuously fabricate the rheology materil, was specially designed to have a function to control cooling rate, shear rate and temperature. During the continuous rotation of barrel with a constant temperature, the shear rate is controlled with the rotation speed. The barrel surface has both the induction heating system and the cooling system to control the temperature of molten metal. By using this system, the effect of the rotation speed and the rotation time on the microstructure was widely examined. The possibility for the rheoforming process was investigated with microstructural characteristic.

  • PDF

Microstructure of Semi-solid A356 Alloys made Using Cooling Plate (냉각판을 이용한 반응고 A356합금의 미세조직)

  • 엄정필;김득규;윤병은;임수근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.06a
    • /
    • pp.148-159
    • /
    • 1997
  • In this study, microstructure, size of primary $\alpha$, solid fraction and hardness of A356 Al alloy, were investigated. Semi-solid A356 allos were obtained by semi-solid continuous casting apparatus consists of melting furnace, formation apparatus of granular primary $\alpha$ and continuous casting apparatus. Size of promary $\alpha$ and fraction solid were decreased with decreasing temperature, and with increasing volume of cooling water. At the cooling water temperature of 15$^{\circ}C$ and cooling water volume of 18.2$\ell$/min, the sizes of primary $\alpha$ phases were decreased up to 40${\mu}{\textrm}{m}$, and fraction solid was 0.68.

  • PDF

A Cooling Roll Design and Prediction of Initial Conditions for Direct Rolling Process of Molten Metal (용탕직접압연공정의 초기조건예측 및 냉각로울 설계)

  • 강충길;김영도
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.233-244
    • /
    • 1995
  • Rolling force in the direct rolling(or twin-roll strip continuous casting) process fo semi-solid material has been computed using rigid-viscoplastic finite element method. Temperature distributions for calculations of rolling force and roll deformation are obtained from thermofluid analysis. Three dimensional roll deformation analysis has also been performed by using commercial package ANSYS. From the results, behavior of metal flow, rolling force and roll deformation have been investigated according to the process conditions of semi-solid direct rolling.

  • PDF