• Title/Summary/Keyword: Continuous Aeration

Search Result 102, Processing Time 0.023 seconds

Studies on the Application of Microorganism to Control the Bulking of Paper Mill Wastewater (제지폐수 벌킹제어를 위한 미생물 적용 연구)

  • 이성호;조준형
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.32-37
    • /
    • 2002
  • The paper mill wastewater actually generating bulking was used to apply to the spot. Batch and continuous type pilots were used in this study. Optimal time after propagating generation of activated sludge in aeration basin by adding Hoc forming microorganism was 24 and 36hours while optimal time of activated sludge in original aeration basin was 60hours. Showing the difference of sedimentation velocity at 7th day after operating a pilot continuously, SV30 was decreased to 50% at 13th day. COD value in aeration basin with floe forming microorganism was 35mg/L while COD value in original aeration basin was 52mg/L. It was indicated that application of Hoc forming microorganism can control the bulking of paper mill wastewater by shortening of recovery time and improving of pollution removal efficiency.

Effect of Aeration Intensity on Simultaneous Nitrification and Denitrification Efficiency in the Submerged Moving Media Biofilm Process (완전침지형 회전매체 생물막 공정에서 포기강도 조절이 동시 질산화/탈질 효율에 미치는 영향)

  • Kim, Jun-myoung;Lee, Sang-min;Lim, Kyeong-ho;Kim, Il-gyou;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.273-279
    • /
    • 2008
  • Space separation method that use independent reactor for nitrification and other reactor for denitrification has been commonly used for biological nitrogen removal process like $A^2O$ process. However, this method needs large space and complicate pipelines and time separation method such as SBR process have a difficulty in continuous treatment. Thus biological nitrogen removal process which is capable of continuous treatment, easy opeation and space saving is urgently required. In this research, submerged moving media was used for a biofilm process and suspended sludge was used for biological nitrogen removal at the same time. In particular DO environment by controlling air flow rate was investigated for simultaneous nitrification/denitrification. Total nitrogen removal in aeration rate more than $67L/min{\cdot}m^3$ showed 51~53% and rose to 65%, 70% and 78% in $50L/min{\cdot}m^3$, $58L/min{\cdot}m^3$ and $25L/min{\cdot}m^3$ respectively. Total phosphorus removal was very low about 10~20% more than $67L/min{\cdot}m^3$ aeration rates. But total phosphorus removal roses when reduces aeration rate by $58L/min{\cdot}m^3$ low and it showed total phosphorus removal of 72% in aeration rate $25L/min{\cdot}m^3$.

Strategic Operation of the Artificial Aeration System for Water Quality Management of the Reservoir (저수지 수질관리를 위한 인공폭기 장치의 최적운전방안)

  • Lim, Kyeong-Ho;Jeong, Sang-Man;Han, Young-Sung;Park, Young-Oh
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.261-270
    • /
    • 2002
  • The artificial aeration in the middle and the small scale reservoirs is widely used to destroy the stratified layer and algal boom. This study has been conducted at the Youncho reservoir located in Keoje island since Jan. 2000 to suggest the most suitable control strategy of the artificial aeration and reduce the side effect. The main results obtained from this research are as follows. The starting time of aeration for destratification was adjusted from the end of March to the beginning of April when the natural stratification is started. In order to prevent an anoxic condition the artificial mixing should be started by the middle of April when the DO in hypolimnion is dropped to less than $5mg/{\ell}$. The decrease DO, caused by the increase in water temperature, spreads rapidly from hypolimnion to themocline. Thermal stratification disappeared after the onset of artificial aeration within 7 days in the Yuncho reservoir. The air diffusers decrease water temperature in the layer of epilimnion and thermocline, but rise it in hypolimnion. The continuous operation of air diffuser prevent the stratification and anoxic condition in hypolimnion despite of the rising of water temperature and algal abundance. The algal abundance is not observed in effective zone by aeration. The turbidity rising problem induced from the aeration is avoided by keeping an air diffuser about 1.5m high from the bottom of lake. During the summer season, ceasing the aeration should be decided carefully. And also, it is necessary to operate the system it considering weather and temperature, and depending on the number and the position of aerators.

Factors affecting nitrite build-up in an intermittently decanted extended aeration process for wastewater treatment (하수처리를 위한 간헐 방류식 장기폭기 공정에서 아질산염의 축적에 영향을 미치는 인자)

  • Ahn, Kyu-Hong;Park, Ki-Young;Lee, Hyung-Jib
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.51-60
    • /
    • 1999
  • An intermittently-aerated, intermittently-decanted single-reactor process (KIDEA process : KIST intermittently decanted extended aeration process) was applied for nitrogen removal from wastewater. Synthetic wastewater with chemical oxygen demand (COD): nitrogen (N) ratio of approximately 5.25: 1 was used. The average COD removal efficiency reached above 95%, and under optimal conditions nitrogen removal efficiency also reached above 90%. This process consisted of 72 minute aeration, 48 minute settling and 24 minute effluent decanting with continuous feeding of influent wastewater from the bottom of the reactor, and did not require a separate anoxic mixing-phase. In this process, nitritation ($1^{st}$ step of nitrification) was induced but nitratation($2^{nd}$ step of nitrification) was suppressed. Main factors responsible for the accumulation of nitrite ion in the experimental condition were free ammonium and dissolved oxygen. This condition of nitrite build-up accelerated by continuous feed flow in the bottom of the KIDEA reactor because of high concentration of ammonia nitrogen in the influent. This research provides one of answers to control nitrate build-up.

  • PDF

Performance of Microbial Fuel Cell Integrated with Anaerobic Membrane Filter for Continuous Sewage Treatment with Stable Effluent Quality (안정적 유출수질의 연속 하수처리를 위한 혐기성 멤브레인 필터와 통합된 미생물연료전지의 성능 평가)

  • Lee, Yunhee;Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.808-812
    • /
    • 2013
  • A new type of microbial fuel cell (MFC) with anaerobic membrane filter was designed to produce bioelectricity and to treat domestic sewage at relatively high organic loading rate (OLR) of $6.25kgCOD/m^3/day$ and short hydraulic retention time (HRT) of 1.9 h. A following aeration system was applied to ensure effluent water quality in continuous operation. Glucose was supplemented to increase the influent concentration of domestic sewage. Influent substrate of 95% was removed via the MFC and following aeration system and the corresponding maximum power density was $25.6mW/m^3$. External resistor of $200{\Omega}$ and air-cathode system contributed better MFC performance comparing to $2000{\Omega}$ and dissolved oxygen as a catholyte.

Biofiltration Using Stabilizing Compost of Ammonia Gas from Composting Manure (축분 퇴비화 암모니아 가스의 안정화 퇴비에 의한 생물학적 탈취처리)

  • Hong, Ji Hyung
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.143-153
    • /
    • 2001
  • Hog manure amended with sawdust (moisture 56~60% wet basis, C/N 19-21) was composted in pilot-scale vessels using continuous aeration(CA) and intermittent aeration(IA) for 3 and 4 weeks. In two subsequent runs of the same duration, composts resulting from each of the first runs were used as a biofilter on the exhaust gas from newly composting material. Conditions between each of these paired sets appeared to be similar. Ammonia was released from the biofilter material during the first week of stabilization while the compost produced ammonia after the first week of composting. In both cases substantial absorption, 61~96 %, of ammonia production from the composting raw material was achieved in the stabilizing material during the final weeks of operation and indicates the use of the stabilizing hog manure/sawdust compost as a biofilter can reduce ammonia emissions. Total $NH_3-N$ emissions during run 2 in IA was less than 2/3 of those in CA. Dry solids loss for the stabilized compost (6~8 weeks) was 19~46%.

  • PDF

A study on an intermittent aeration membrane bioreactor system using ammonia sensor to decrease energy consumption and sludge concentration by tubular membrane (암모니아 센서를 이용한 간헐폭기 Membrane bioreactor공정에서의 전력비 저감과 관형막을 이용한 슬러지 농축에 관한 연구)

  • Kang, Heeseok;Lee, Euijong;Kim, Hyungsoo;Jang, Am
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.161-170
    • /
    • 2014
  • It is essential to decrease energy consumption and excess sludge to economically operate sewage treatment plant. This becomes more important along with a ban on sea dumping and exhaustion of resource. Therefore, many researchers have been study on energy consumption reduction and strategies for minimization of excess sludge production from the activated sludge process. The aeration cost account for a high proportion of maintenance cost because sufficient air is necessary to keep nitrifying bacteria activity of which the oxygen affinity is inferior to that of heterotrophic bacteria. Also, additional costs are incurred to stabilize excess sludge and decrease the volume of sludge. There were anoxic, aerobic, membrane, deairation and concentration zone in this MBR process. Continuous aeration was provided to prevent membrane fouling in membrane zone and intermittent aeration was provided in aerobic zone through ammonia sensor. So, there was the minimum oxygen to remove $NH_4-N$ below limited quantity that could be eliminated in membrane zone. As the result of this control, energy consumption of aeration system declined by between 10.4 % and 19.1 %. Besides, we could maintain high MLSS concentration in concentration zone and this induced the microorganisms to be in starved condition. Consequentially, the amount of excess sludge decrease by about 15 %.

고정화 시스템을 이용한 용균효소의 생산

  • 류병호;박종옥;진성현
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.500-506
    • /
    • 1996
  • Bacillus subtilis SH-1 screened from coastal sea water of South Korea was used to produce bacteriolytic enzyme. The production of bacteriolytic enzyme by immobilized cells was investigated. The optimum conditions for the continuous production of the bacteriolytic enzyme using immobilized cells were 2.4 mm diameter of 0.3% alginate beads, 20 ml/h of substrate feeding rate and 20 l/min of aeration rate. A productivity of 76.5 to 88.0 units/ml could be obtained for 25 days by continuous column reactor under the optimum conditions.

  • PDF

Growth Characteristics of Mixotrophic Scenedesmus acuminatus under Semi-Continuous Culture System (혼합영양생물인 Scenedesmus acuminatus의 반연속 배양 시 성장특성 연구)

  • Gao, Suyan;Hong, Kai;Lee, Taeyoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.6
    • /
    • pp.332-338
    • /
    • 2017
  • The purpose of this study was to determine optimum value of aeration, acetate dosage, and $CO_2$ input for the cultivation of Scenedesmus acuminatus. Highest specific growth rate and maximum biomass productivity was obtained by the aeration of 0.72 vvm and lower specific growth rates and maximum biomass productivity were obtained for other aeration tests. When putting 0.3 M of ammonium acetate in JM medium, the highest specific growth rate and maximum biomass productivity were obtained. $CO_2$ input tests were performed during semi-continuous culturing tests. The highest specific growth rate ($0.460d^{-1}$) and maximum biomass productivity ($0.936gL^{-1}d^{-1}$) were obtained after replacing 50% of solution with 0.3 M of acetate solution for $CO_2$ input tests. However, more dilutions after the first dilution resulted in lower specific growth rate and maximum biomass productivity. In aeration tests, the highest specific growth rate ($0.381d^{-1}$) and maximum biomass productivity ($0.253gL^{-1}d^{-1}$) were obtained when cultivating it with JM medium, but the specific growth rate and maximum biomass producitivty were significantly decreased when 50% of solution was replaced by acetate containing solution.

The Effect of Coagulant on Filtration Performance in Submerged MBR System (침지형 MBR 공정에서 응집제가 여과성능에 미치는 영향)

  • Kim Kwan-Yeop;Kim Ji-Hoon;Kim Young-Hoon;Kim Hyung-Soo
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.182-187
    • /
    • 2006
  • The purpose of this study was to investigate effect of coagulation on filtration performance of membrane in submerged MBR system and influence of continuous aeration to reduce fouling of membrane surface on coagulated floc. For this purpose, aeration tank sludge of MBR system was compared with jar-test sludge. The experimental results were analysed in terms of floc size and SRF (Specific resistance of Filtration). The more alum was added, the more content of floc below $10{\mu}m$ reduced and SRF decreased. But compared with jar-test results, it was found that effect of coagulation on MBR floc was reduced. Operation time of membrane in alum added MBR was longer than that in control MBR. But operation time was not proportional to alum dose. It was thought that the result was reason that floc below $10{\mu}m$ was not reduced sufficiently by shear force of continuous aeration. Moreover it was founded that if alum is added more than proper dose, it brings filtration resistance to increase.