• 제목/요약/키워드: Context Tree

Search Result 143, Processing Time 0.02 seconds

Studies on the Construction Method of Chwibyeong and Investigating Original Form of the Chwibyeong at the Juhapru in the Changdeok Palace (취병(翠屛)의 조성방법과 창덕궁 주합루(宙合樓) 취병의 원형규명)

  • Jung, Woo-Jin;Sim, Woo-Kyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.2
    • /
    • pp.86-113
    • /
    • 2014
  • This study has researched the characteristics and elements of Chwibyeong (翠屛), a sort of trellis in the Joseon Dynasty through the old documents, and the original form of Chwibyeong at Juhapru (宙合樓) in Changdeuk Palace. The results were as follow. First, as the result of literatures analysis for Imwon-gyeongje-ji (林園經濟志) and Jeungbo-sallim-gyeongje (增補山林經濟), the plant screen was classified as kinds of support[frame] material, plants and methods of planting. It was found that the supports of Chwibyeong were made of bamboo or the material such as the Jinjangmok (眞長木: a stick of oak) and Giryu (杞柳: Salix purpurea var. japonica). The evergreen coniferous trees including Pinus densiflora, Taxus cuspidata and Thuja orientalis were mainly used for the plant material of Chwibyeong. The general planting method of Chwibyeong was to plant on the ground, but sometimes the container planting was also found on the artificial ground. Second, the term of 'Chwibyeong' in the literatures was used in only the screen made by evergreen trees, and the superordinate category term of it was indicated by 'byeong (屛)'. Therefore Chwibyeong was a compound word formed from 'chwi (翠)' which means the characteristics of evergreen and 'byeong' as tree screen which the support was made by bamboo. And Chwibyeong had semantic context which was combined with the literary symbolization to describe a landscape of green peak and Taoist ideology be inherent from 'twelve peaks of Musan[巫山十二峰]' in Sichuan sheng (四川省). Thirdly, the photograph of Chwibyeong at Juhapru taken by the 1880s, showed that Chwibyeong was made with coniferous trees and was almost 2 meters high. The Chwibyeong at Juhapru was removed during the Japanese colonial era, but a few yew trees(Taxus cuspidata) used for Chwibyeong are still remaining. And some Juniperus chinensis which the composition time is unclear, were cultivated while hung loose its branchs at the sides of Eosumun (魚水門). This Junipers were presumed to be planted by Japanese after Japanese annexation of Korea(1910), and it was judged that both of the roofs of Eosumun's side gates might have been transformed into Japanese style at the same time. Lastly, Chwibyeong at Juhapru was restored in 2008 but it was restored in wrong way from original form without precise research. Especially Chwibyeong was restored with Sasa boreralis which is damaged by frost, so it requires exertion that should revive the originals to plant original material as much as possible. And it needs the development of fabrication technique for Chwibyeong and the application to current landscape architecture.

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.

Cooperative Sales Promotion in Manufacturer-Retailer Channel under Unplanned Buying Potential (비계획구매를 고려한 제조업체와 유통업체의 판매촉진 비용 분담)

  • Kim, Hyun Sik
    • Journal of Distribution Research
    • /
    • v.17 no.4
    • /
    • pp.29-53
    • /
    • 2012
  • As so many marketers get to use diverse sales promotion methods, manufacturer and retailer in a channel often use them too. In this context, diverse issues on sales promotion management arise. One of them is the issue of unplanned buying. Consumers' unplanned buying is clearly better off for the retailer but not for manufacturer. This asymmetric influence of unplanned buying should be dealt with prudently because of its possibility of provocation of channel conflict. However, there have been scarce studies on the sales promotion management strategy considering the unplanned buying and its asymmetric effect on retailer and manufacturer. In this paper, we try to find a better way for a manufacturer in a channel to promote performance through the retailer's sales promotion efforts when there is potential of unplanned buying effect. We investigate via game-theoretic modeling what is the optimal cost sharing level between the manufacturer and retailer when there is unplanned buying effect. We investigated following issues about the topic as follows: (1) What structure of cost sharing mechanism should the manufacturer and retailer in a channel choose when unplanned buying effect is strong (or weak)? (2) How much payoff could the manufacturer and retailer in a channel get when unplanned buying effect is strong (or weak)? We focus on the impact of unplanned buying effect on the optimal cost sharing mechanism for sales promotions between a manufacturer and a retailer in a same channel. So we consider two players in the game, a manufacturer and a retailer who are interacting in a same distribution channel. The model is of complete information game type. In the model, the manufacturer is the Stackelberg leader and the retailer is the follower. Variables in the model are as following table. Manufacturer's objective function in the basic game is as follows: ${\Pi}={\Pi}_1+{\Pi}_2$, where, ${\Pi}_1=w_1(1+L-p_1)-{\psi}^2$, ${\Pi}_2=w_2(1-{\epsilon}L-p_2)$. And retailer's is as follows: ${\pi}={\pi}_1+{\pi}_2$, where, ${\pi}_1=(p_1-w_1)(1+L-p_1)-L(L-{\psi})+p_u(b+L-p_u)$, ${\pi}_2=(p_2-w_2)(1-{\epsilon}L-p_2)$. The model is of four stages in two periods. Stages of the game are as follows. (Stage 1) Manufacturer sets wholesale price of the first period($w_1$) and cost sharing level of channel sales promotion(${\Psi}$). (Stage 2) Retailer sets retail price of the focal brand($p_1$), the unplanned buying item($p_u$), and sales promotion level(L). (Stage 3) Manufacturer sets wholesale price of the second period($w_2$). (Stage 4) Retailer sets retail price of the second period($p_2$). Since the model is a kind of dynamic games, we try to find a subgame perfect equilibrium to derive some theoretical and managerial implications. In order to obtain the subgame perfect equilibrium, we use the backward induction method. In using backward induction approach, we solve the problems backward from stage 4 to stage 1. By completely knowing follower's optimal reaction to the leader's potential actions, we can fold the game tree backward. Equilibrium of each variable in the basic game is as following table. We conducted more analysis of additional game about diverse cost level of manufacturer. Manufacturer's objective function in the additional game is same with that of the basic game as follows: ${\Pi}={\Pi}_1+{\Pi}_2$, where, ${\Pi}_1=w_1(1+L-p_1)-{\psi}^2$, ${\Pi}_2=w_2(1-{\epsilon}L-p_2)$. But retailer's objective function is different from that of the basic game as follows: ${\pi}={\pi}_1+{\pi}_2$, where, ${\pi}_1=(p_1-w_1)(1+L-p_1)-L(L-{\psi})+(p_u-c)(b+L-p_u)$, ${\pi}_2=(p_2-w_2)(1-{\epsilon}L-p_2)$. Equilibrium of each variable in this additional game is as following table. Major findings of the current study are as follows: (1) As the unplanned buying effect gets stronger, manufacturer and retailer had better increase the cost for sales promotion. (2) As the unplanned buying effect gets stronger, manufacturer had better decrease the cost sharing portion of total cost for sales promotion. (3) Manufacturer's profit is increasing function of the unplanned buying effect. (4) All results of (1),(2),(3) are alleviated by the increase of retailer's procurement cost to acquire unplanned buying items. The authors discuss the implications of those results for the marketers in manufacturers or retailers. The current study firstly suggests some managerial implications for the manufacturer how to share the sales promotion cost with the retailer in a channel to the high or low level of the consumers' unplanned buying potential.

  • PDF