• Title/Summary/Keyword: Context Prediction Technique

Search Result 30, Processing Time 0.022 seconds

A Study on the Lossless Image Compression using Context based Predictive Technique of Error Feedback (에러 피드백의 컨텍스트 기반 예측기법을 이용한 무손실 영상 압축에 관한 연구)

  • Chu, Hyung-Suk;Park, Byung-Su;An, Chong-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2251-2256
    • /
    • 2007
  • In this paper, the wavelet transform based lossless image compression algorithm is proposed. The proposed algorithm transforms the input image using 9/7 ICFB and S+P filter, and eliminates the spacious correlation of the subband coefficients, applying the context modeling predictive technique based on the multi-resolution structure and the feedback of the prediction error. The prediction context exploits the subordination and direction property of the different level subband in the vertical, horizontal, and diagonal subband coefficients. The simulation result of the high frequency images such as PEPPERS, BOAT, and AIRPLANE shows that the proposed algorithm efficiently predicts the edge area of each multi-resolution subband.

Context-based Predictive Coding Scheme for Lossless Image Compression (무손실 영상 압축을 위한 컨텍스트 기반 적응적 예측 부호화 방법)

  • Kim, Jongho;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.183-189
    • /
    • 2013
  • This paper proposes a novel lossless image compression scheme composed of direction-adaptive prediction and context-based entropy coding. In the prediction stage, we analyze the directional property with respect to the current coding pixel and select an appropriate prediction pixel. In order to further reduce the prediction error, we propose a prediction error compensation technique based on the context model defined by the activities and directional properties of neighboring pixels. The proposed scheme applies a context-based Golomb-Rice coding as the entropy coding since the coding efficiency can be improved by using the conditional entropy from the viewpoint of the information theory. Experimental results indicate that the proposed lossless image compression scheme outperforms the low complexity and high efficient JPEG-LS in terms of the coding efficiency by 1.3% on average for various test images, specifically for the images with a remarkable direction the proposed scheme shows better results.

An Efficient VLC Table Prediction Scheme for H.264 Using Weighting Multiple Reference Blocks (H.264 표준에서 가중된 다중 참조 블록을 이용한 효율적인 VLC 표 예측 방법)

  • Heo, Jin;Oh, Kwan-Jung;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.39-42
    • /
    • 2005
  • H.264, a recently proposed international video coding standard, has adopted context-based adaptive variable length coding (CAVLC) as the entropy coding tool in the baseline profile. By combining an adaptive variable length coding technique with context modeling, we can achieve a high degree of redundancy reduction. However, CAVLC in H.264 has weakness that the correct prediction rate of the variable length coding (VLC) table is low in a complex area, such as the boundary of an object. In this paper, we propose a VLC table prediction scheme considering multiple reference blocks; the same position block of the previous frame and the neighboring blocks of the current frame. The proposed algorithm obtains the new weighting values considering correctness of the VLC table for each reference block. Using this method, we can enhance the prediction rate of the VLC table and reduce the bit-rate.

  • PDF

Developing an User Location Prediction Model for Ubiquitous Computing based on a Spatial Information Management Technique

  • Choi, Jin-Won;Lee, Yung-Il
    • Architectural research
    • /
    • v.12 no.2
    • /
    • pp.15-22
    • /
    • 2010
  • Our prediction model is based on the development of "Semantic Location Model." It embodies geometrical and topological information which can increase the efficiency in prediction and make it easy to manipulate the prediction model. Data mining is being implemented to extract the inhabitant's location patterns generated day by day. As a result, the self-learning system will be able to semantically predict the inhabitant's location in advance. This context-aware system brings about the key component of the ubiquitous computing environment. First, we explain the semantic location model and data mining methods. Then the location prediction model for the ubiquitous computing system is described in details. Finally, the prototype system is introduced to demonstrate and evaluate our prediction model.

An Ensemble Cascading Extremely Randomized Trees Framework for Short-Term Traffic Flow Prediction

  • Zhang, Fan;Bai, Jing;Li, Xiaoyu;Pei, Changxing;Havyarimana, Vincent
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1975-1988
    • /
    • 2019
  • Short-term traffic flow prediction plays an important role in intelligent transportation systems (ITS) in areas such as transportation management, traffic control and guidance. For short-term traffic flow regression predictions, the main challenge stems from the non-stationary property of traffic flow data. In this paper, we design an ensemble cascading prediction framework based on extremely randomized trees (extra-trees) using a boosting technique called EET to predict the short-term traffic flow under non-stationary environments. Extra-trees is a tree-based ensemble method. It essentially consists of strongly randomizing both the attribute and cut-point choices while splitting a tree node. This mechanism reduces the variance of the model and is, therefore, more suitable for traffic flow regression prediction in non-stationary environments. Moreover, the extra-trees algorithm uses boosting ensemble technique averaging to improve the predictive accuracy and control overfitting. To the best of our knowledge, this is the first time that extra-trees have been used as fundamental building blocks in boosting committee machines. The proposed approach involves predicting 5 min in advance using real-time traffic flow data in the context of inherently considering temporal and spatial correlations. Experiments demonstrate that the proposed method achieves higher accuracy and lower variance and computational complexity when compared to the existing methods.

Enhancing Heart Disease Prediction Accuracy through Soft Voting Ensemble Techniques

  • Byung-Joo Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.290-297
    • /
    • 2024
  • We investigate the efficacy of ensemble learning methods, specifically the soft voting technique, for enhancing heart disease prediction accuracy. Our study uniquely combines Logistic Regression, SVM with RBF Kernel, and Random Forest models in a soft voting ensemble to improve predictive performance. We demonstrate that this approach outperforms individual models in diagnosing heart disease. Our research contributes to the field by applying a well-curated dataset with normalization and optimization techniques, conducting a comprehensive comparative analysis of different machine learning models, and showcasing the superior performance of the soft voting ensemble in medical diagnosis. This multifaceted approach allows us to provide a thorough evaluation of the soft voting ensemble's effectiveness in the context of heart disease prediction. We evaluate our models based on accuracy, precision, recall, F1 score, and Area Under the ROC Curve (AUC). Our results indicate that the soft voting ensemble technique achieves higher accuracy and robustness in heart disease prediction compared to individual classifiers. This study advances the application of machine learning in medical diagnostics, offering a novel approach to improve heart disease prediction. Our findings have significant implications for early detection and management of heart disease, potentially contributing to better patient outcomes and more efficient healthcare resource allocation.

(Prediction of reduction goals : deterministic approach) (리덕션 골의 예상: 결정적인 접근 방법)

  • 이경옥
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.461-465
    • /
    • 2003
  • The technique of reduction goal prediction in LR parsing has several applications such as the computation of right context. An LR parser generating the set of pre-determined reduction goals was previously suggested. The set approach is nondeterministic, and so it is inappropriate in some applications. This paper suggests a deterministic technique to give a uniquely predictable reduction symbol.

High Efficient Entropy Coding For Edge Image Compression

  • Han, Jong-Woo;Kim, Do-Hyun;Kim, Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.31-40
    • /
    • 2016
  • In this paper, we analyse the characteristics of the edge image and propose a new entropy coding optimized to the compression of the edge image. The pixel values of the edge image have the Gaussian distribution around '0', and most of the pixel values are '0'. By using this analysis, the Zero Block technique is utilized in spatial domain. And the Intra Prediction Mode of the edge image is similar to the mode of the surrounding blocks or likely to be the Planar Mode or the Horizontal Mode. In this paper, we make use of the MPM technique that produces the Intra Prediction Mode with high probability modes. By utilizing the above properties, we design a new entropy coding method that is suitable for edge image and perform the compression. In case the existing compression techniques are applied to edge image, compression ratio is low and the algorithm is complicated as more than necessity and the running time is very long, because those techniques are based on the natural images. However, the compression ratio and the running time of the proposed technique is high and very short, respectively, because the proposed algorithm is optimized to the compression of the edge image. Experimental results indicate that the proposed algorithm provides better visual and PSNR performance up to 11 times than the JPEG.

Method of Profile Storage for Improving Accuracy and Searching Time on Ubiquitous Computing

  • Jang, Chang-Bok;Lee, Joon-Dong;Lee, Moo-Hun;Cho, Sung-Hoon;Choi, Eui-In
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.12
    • /
    • pp.1709-1718
    • /
    • 2006
  • Users are able to use the information and service more free than previous wire network due to development of wireless network and device. For this reason, various studies on ubiquitous networks have been conducted. Various contexts brought in this ubiquitous environment, have recognized user's action through sensors. This results in the provision of better services. Because services exist in various places in ubiquitous networks, the application has the time of services searching. In addition, user's context is very dynamic, so a method needs to be found to recommend services to user by context. Therefore, techniques for reducing the time of service and increasing accuracy of recommendation are being studied. But it is difficult to quickly and appropriately provide large numbers of services, because only basic context information is stored. For this reason, we suggest DUPS(Dimension User Profile System), which stores location, time, and frequency information of often used services. Because previous technique used to simple information for recommending service without predicting services which is going to use on future, we can provide better service, and improve accuracy over previous techniques.

  • PDF

A case of corporate failure prediction

  • Shin, Kyung-Shik;Jo, Hongkyu;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.199-202
    • /
    • 1996
  • Although numerous studies demonstrate that one technique outperforms the others for a given data set, there is often no way to tell a priori which of these techniques will be most effective to solve a specific problem. Alternatively, it has been suggested that a better approach to classification problem might be to integrate several different forecasting techniques by combining their results. The issues of interest are how to integrate different modeling techniques to increase the prediction performance. This paper proposes the post-model integration method, which means integration is performed after individual techniques produce their own outputs, by finding the best combination of the results of each method. To get the optimal or near optimal combination of different prediction techniques. Genetic Algorithms (GAs) are applied, which are particularly suitable for multi-parameter optimization problems with an objective function subject to numerous hard and soft constraints. This study applied three individual classification techniques (Discriminant analysis, Logit and Neural Networks) as base models to the corporate failure prediction context. Results of composite prediction were compared to the individual models. Preliminary results suggests that the use of integrated methods will offer improved performance in business classification problems.

  • PDF