Demonstration-based learning has the advantage that a user can easily teach his/her robot new task knowledge just by demonstrating directly how to perform the task. However, many previous demonstration-based learning techniques used a kind of attribute-value vector model to represent their state spaces and policies. Due to the limitation of this model, they suffered from both low efficiency of the learning process and low reusability of the learned policy. In this paper, we present a new demonstration-based learning method, in which the relational model is adopted in place of the attribute-value model. Applying the relational instance-based learning to the training examples extracted from the records of the user demonstrations, the method derives a relational instance-based policy which can be easily utilized for other similar tasks in the same domain. A relational policy maps a context, represented as a pair of (state, goal), to a corresponding action to be executed. In this paper, we give a detail explanation of our demonstration-based relational policy learning method, and then analyze the effectiveness of our learning method through some experiments using a robot simulator.
A document type definition(DTD) which defines tags for a document is a XML document grammar that defines syntactic structure of a document. An XML document keeps the rules and must be parsed to check validation. To parse XML document, the deterministic parsing method of programming language is irrelevant because it does not satisfy the definition of deterministic content model in element declaration. In this paper, we consider editing of a valid XML document in syntax-directed editing environment, and we suggest the internal storage representations of syntax in DTD and theirs algorithms. The consequence is that a syntactic structure of textual DTD is transformed into graph and table structures. The table structure of DTD is interpreted the context free grammar which has attribute values and is used in syntax-directed editor for XML. We called this the XML abstract grammar and showed generated results and examples.
The e-commerce fashion market has experienced a remarkable growth, leading to an overwhelming availability of shared information and numerous choices for users. In light of this, chatbots have emerged as a promising technological solution to enhance personalized services in this context. This study aimed to develop user-product attributes for a chatbot-based personalized fashion recommendation service using big data text mining techniques. To accomplish this, over one million consumer reviews from Coupang, an e-commerce platform, were collected and analyzed using frequency analyses to identify the upper-level attributes of users and products. Attribute terms were then assigned to each user-product attribute, including user body shape (body proportion, BMI), user needs (functional, expressive, aesthetic), user TPO (time, place, occasion), product design elements (fit, color, material, detail), product size (label, measurement), and product care (laundry, maintenance). The classification of user-product attributes was found to be applicable to the knowledge graph of the Conversational Path Reasoning model. A testing environment was established to evaluate the usefulness of attributes based on real e-commerce users and purchased product information. This study is significant in proposing a new research methodology in the field of Fashion Informatics for constructing the knowledge base of a chatbot based on text mining analysis. The proposed research methodology is expected to enhance fashion technology and improve personalized fashion recommendation service and user experience with a chatbot in the e-commerce market.
Both companies and consumers are highly interested in on-line customer reviews which enable consumers to share their experience and knowledge about products. In this study, after classifying real reviews into context units and deriving categories, we analyzed differences between categories based on channel(manufacturers' homepage/ shopping mall), product attribute(search/experience) and price(high/low). The method to derive categories is based on roughly adopting constructs of ACSI model and elaborate and repetitive classification of real reviews. We set up the classification category with 3 levels. Level 1 consists of product and service, level 2 consists of function, design, price, purchase motive, suggestion/user-tip and recommendation/repurchase in product and AS/up-grade and delivery/others in service and level 3 is composed of details of level 2 of category. We could find remarkable differences between channels in all 8 items of level 2 of category. As the number of context units in homepage is more than in shopping mall, we found reviews in homepage is more concrete. Moreover, overall satisfaction in review was higher at homepage's. Also, in product attribute dimension, we found different patterns of reviews in design, purchase motive, suggestion/user-tip, recommendation/repurchase, AS/up-grade and delivery/others and no difference in overall customer's satisfaction. In price dimension, we found differences between high and low price in design, price and AS/up-grade and no difference in overall customer's satisfaction.
FCM (Fuzzy C-Means) clustering algorithm, a typical split-based clustering algorithm, has been successfully applied to the various fields. Nonetheless, the FCM clustering algorithm has some problems, such as high sensitivity to noise and local data, the different clustering result from the intuitive grasp, and the setting of initial round and the number of clusters. To address these problems, in this paper, we determine fuzzy numbers which project the FCM clustering result on the axis with the specific attribute. And we propose a model that the fuzzy numbers apply to FDT (Fuzzy Decision Tree). This model improves the two problems of FCM clustering algorithm such as elevated sensitivity to data, and the difference of the clustering result from the intuitional decision. And also, this paper compares the effect of the proposed model and the result of FCM clustering algorithm through the experiment using real traffic and rainfall data. The experimental results indicate that the proposed model provides more reliable results by the sensitivity relief for data. And we can see that it has improved on the concordance of FCM clustering result with the intuitive expectation.
The Ubiquitous computer environment is thing which invisible computer that is not shown linked mutually through network so that user may use computer always is been pervasive. Intend computing environment that can use easily as user wants and it is the smart environment that user provides context awareness that is wanting computing environment. This Ubiquitous computing contains much specially weak side in security. Masquerade attack of that crawl that is quoted to user or server among device that is around user by that discrete various computing devices exist everywhere among them become possible. Hereupon, in this paper, proposed method that have following characteristic. Present authentication model through transfer or device. Suggest two method that realize authentication through device in case of moved to method(MD: Multi Domain) and user ownself space(SD: Single Domain) that realize authentication through device in case of moved user's direct path who device differs.
The market for Internet fashion/coordination shopping malls has been enormously increased year by year. However, online shoppers feel inconvenient because most of Internet shopping malls still rely on item classifications by category and do not provide the functionality in terms of which shoppers can find clothes they want. In an effort to build a fashion/coordination system for women's dress adopting the Heuristic-based method, one of the Context-based methods, we present a method for defining characteristics of a woman's dress as attributes and their inheritance relations, which can be input by a product manager. We also compare and analyze various methods for recommending the most similar clothes.
The purpose of study is not only analyzes the space images expressed with mass-produced furniture of the time and economy throughout the cover pages of IKEA published catalogs since 1951 to 2015 but also is set to deduct the characteristics of spatial expression regarding the usage of digital media applied catalogs which is to be published along with the 2015 catalog. Thus, throughout research of basic literature such as domestic and foreign academic material, books, and websites, the theoretical consideration of the meaning of IKEA's pursuit of selling manufactured furnitures is foregone. Based on the above, Analyze and organize periodically applied interior space in accordance with context characteristic by understanding the attribute of catalogue from expansion of media space applied new digital media. The importance of research on IKEA is not only the quality of products designed by them, but emotional aspect that deeply penetrate customer's actual daily life. Implication of digital media message to advertisement is a important role in society that shares digitalized information. IKEA's innovative attempt of connection to new world using traditional method of marketing expression and smart device may help people better understand space.
In this paper, we propose a personalized event recommendation scheme using user's activity analysis and collaborative filtering in social network environments. The proposed scheme predicts un-evaluated attribute values through analysis of user activities, relationships, and collaborative filtering. The proposed scheme also incorporates a user's recent preferences by considering the recent history for the user or context-aware information to precisely grasp the user's preferences. As a result, the proposed scheme can recommend events to users with a high possibility to participate in new events, preventing indiscriminate recommendations. In order to show the superiority of the proposed scheme, we compare it with the existing scheme through performance evaluation.
Zhang, Fan;Bai, Jing;Li, Xiaoyu;Pei, Changxing;Havyarimana, Vincent
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.4
/
pp.1975-1988
/
2019
Short-term traffic flow prediction plays an important role in intelligent transportation systems (ITS) in areas such as transportation management, traffic control and guidance. For short-term traffic flow regression predictions, the main challenge stems from the non-stationary property of traffic flow data. In this paper, we design an ensemble cascading prediction framework based on extremely randomized trees (extra-trees) using a boosting technique called EET to predict the short-term traffic flow under non-stationary environments. Extra-trees is a tree-based ensemble method. It essentially consists of strongly randomizing both the attribute and cut-point choices while splitting a tree node. This mechanism reduces the variance of the model and is, therefore, more suitable for traffic flow regression prediction in non-stationary environments. Moreover, the extra-trees algorithm uses boosting ensemble technique averaging to improve the predictive accuracy and control overfitting. To the best of our knowledge, this is the first time that extra-trees have been used as fundamental building blocks in boosting committee machines. The proposed approach involves predicting 5 min in advance using real-time traffic flow data in the context of inherently considering temporal and spatial correlations. Experiments demonstrate that the proposed method achieves higher accuracy and lower variance and computational complexity when compared to the existing methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.