• Title/Summary/Keyword: Contents Recommendation Method

Search Result 161, Processing Time 0.022 seconds

Evaluation Method based on Contents and Social Network for Blog Recommendation (블로그 추천을 위한 내용 유사 클러스터 기반의 블로그 평가)

  • Kim, Hyun-Jung;Kim, Mu-Cheol;Han, Sang-Yong
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.1066-1069
    • /
    • 2010
  • 본 연구는 최근 블로그 추천 연구의 주요 쟁점으로 제기되는 추천 후보의 선정과 추천 후보 평가에 접근한다. 첫 번째로 추천 후보 선정은 추천 요구자와 소셜 네트워크 관계에 있는 블로그를 중심으로 진행한다. 이러한 접근방식은 추천 요구자가 타 블로그와 직접적인 관계를 많이 이루지 못했을 경우 다수의 간접 연결 블로그가 추천 후보로 차지하게 된다. 직접 관계의 희소함으로 인하여 추천 후보와 추천 요구자와의 연관성이 전체적으로 저하되는 문제에 초점을 맞추어 추천 대상을 내용 기반의 클러스터 단위로 선정하는 방식을 제안한다. 또한 추천 대상 블로그의 평가에서는 소셜 네트워크 및 내용 평가를 결합시킴으로써 요구자에게 보다 적합한 추천 결과를 제시한다.

Two-step Clustering Method Using Time Schema for Performance Improvement in Recommender Systems (추천시스템의 성능 향상을 위한 시간스키마 적용 2단계 클러스터링 기법)

  • Bu Jong-Su;Hong Jong-Kyu;Park Won-Ik;Kim Ryong;Kim Young-Kuk
    • The Journal of Society for e-Business Studies
    • /
    • v.10 no.2
    • /
    • pp.109-132
    • /
    • 2005
  • With the flood of multimedia contents over the digital TV channels, the internet, and etc., users sometimes have a difficulty in finding their preferred contents, spend heavy surfing time to find them, and are even very likely to miss them while searching. In this paper we suggests two-step clustering technique using time schema on how the system can recommend the user's preferred contents based on the collaborative filtering that has been proved to be successful when new users appeared. This method maps and recommends users' profile according to the gender and age at the first step, and then recommends a probabilistic item clustering customers who choose the same item at the same time based on time schema at the second stage. In addition, this has improved the accuracy of predictions in recommendation and the efficiency in time calculation by reflecting feedbacks of the result of the recommender engine and dynamically update customers' preference.

  • PDF

Social Tagging-based Recommendation Platform for Patented Technology Transfer (특허의 기술이전 활성화를 위한 소셜 태깅기반 지적재산권 추천플랫폼)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.53-77
    • /
    • 2015
  • Korea has witnessed an increasing number of domestic patent applications, but a majority of them are not utilized to their maximum potential but end up becoming obsolete. According to the 2012 National Congress' Inspection of Administration, about 73% of patents possessed by universities and public-funded research institutions failed to lead to creating social values, but remain latent. One of the main problem of this issue is that patent creators such as individual researcher, university, or research institution lack abilities to commercialize their patents into viable businesses with those enterprises that are in need of them. Also, for enterprises side, it is hard to find the appropriate patents by searching keywords on all such occasions. This system proposes a patent recommendation system that can identify and recommend intellectual rights appropriate to users' interested fields among a rapidly accumulating number of patent assets in a more easy and efficient manner. The proposed system extracts core contents and technology sectors from the existing pool of patents, and combines it with secondary social knowledge, which derives from tags information created by users, in order to find the best patents recommended for users. That is to say, in an early stage where there is no accumulated tag information, the recommendation is done by utilizing content characteristics, which are identified through an analysis of key words contained in such parameters as 'Title of Invention' and 'Claim' among the various patent attributes. In order to do this, the suggested system extracts only nouns from patents and assigns a weight to each noun according to the importance of it in all patents by performing TF-IDF analysis. After that, it finds patents which have similar weights with preferred patents by a user. In this paper, this similarity is called a "Domain Similarity". Next, the suggested system extract technology sector's characteristics from patent document by analyzing the international technology classification code (International Patent Classification, IPC). Every patents have more than one IPC, and each user can attach more than one tag to the patents they like. Thus, each user has a set of IPC codes included in tagged patents. The suggested system manages this IPC set to analyze technology preference of each user and find the well-fitted patents for them. In order to do this, the suggeted system calcuates a 'Technology_Similarity' between a set of IPC codes and IPC codes contained in all other patents. After that, when the tag information of multiple users are accumulated, the system expands the recommendations in consideration of other users' social tag information relating to the patent that is tagged by a concerned user. The similarity between tag information of perferred 'patents by user and other patents are called a 'Social Simialrity' in this paper. Lastly, a 'Total Similarity' are calculated by adding these three differenent similarites and patents having the highest 'Total Similarity' are recommended to each user. The suggested system are applied to a total of 1,638 korean patents obtained from the Korea Industrial Property Rights Information Service (KIPRIS) run by the Korea Intellectual Property Office. However, since this original dataset does not include tag information, we create virtual tag information and utilized this to construct the semi-virtual dataset. The proposed recommendation algorithm was implemented with JAVA, a computer programming language, and a prototype graphic user interface was also designed for this study. As the proposed system did not have dependent variables and uses virtual data, it is impossible to verify the recommendation system with a statistical method. Therefore, the study uses a scenario test method to verify the operational feasibility and recommendation effectiveness of the system. The results of this study are expected to improve the possibility of matching promising patents with the best suitable businesses. It is assumed that users' experiential knowledge can be accumulated, managed, and utilized in the As-Is patent system, which currently only manages standardized patent information.

A Study for Competency Enhancing of Creative Enterprise based on Textile Materials (텍스타일 기반 창조기업의 역량강화를 위한 교육평가 연구)

  • Yoon, Hae-Gyung;Choi, Seung-Bae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.2
    • /
    • pp.452-466
    • /
    • 2015
  • The study analyzed the result of a survey on educational programs after the provision of professional development education in textile-based industries, with the aim of suggesting a method of evaluating professional development education, by shedding new light on the educational contents and environment required by industries and on the components required to strengthen competence based on an evaluation of the outcomes of such educational programs. Methods of analysis included frequency & average analysis, ANOVA and portfolio analysis, and a questionnaire containing seven questions on satisfaction with 'educational contents,' six questions on satisfaction with 'educational environment,' three questions on educational effect and questions on overall satisfaction with education was used as an analysis tool. Data used in the analysis was obtained through a survey of the attendants of lectures given from January 2014 to September 2014, and the respondents included 30 persons enrolled in CEO courses, 167 persons enrolled in employment courses and 101 persons enrolled in employment & start-up business courses. The results of the research are as follows. 1. Looking at frequency distribution by educational course, it was shown, from highest to lowest, to be Incumbent Courses (167 persons, 56%), Employment & Start-up Courses (101 persons, 33.9%) and CEO Courses (30 persons, 10.1%). Looking at average analysis by question, the value of most questions on Employment & Start-up Courses turned out to be lower than Employment Courses and CEO Courses. 2. Through a variance analysis on questions related to educational courses (Employment & Start-up Course, Incumbent Course & CEO Course) and post-verification, it turned out that Employment Course is in the same group as the CEO Course in most questions, and that Employment & Start-up Course was a separate group. 3. Overall satisfaction with education turned out to be as high, at 4.1 out of 5. 4. Through a portfolio analysis on educational courses, it was found that 'Overall Satisfaction with Educational Contents,' 'Usefulness of Educational Contents,' 'Overall Satisfaction with Educational Environment' and 'Quality and Ability of Instructors' were included in areas of recommendation.

MHP-based Multi-Step the EPG System using Preference of Audience Groups (시청자 그룹 선호도를 이용한 MHP 기반의 다단계 EPG 시스템)

  • Lee, Si-Hwa;Hwang, Dae-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.219-230
    • /
    • 2009
  • With the development of broadcasting technology from analogue to interactive digital, the number of TV channels and TV contents provided to audiences is increasing in a rapid speed. In this multi-channel world, it is difficult to adapt to the increase of the TV channel numbers and their contents merely using remote controller to search channels. For these reasons, the EPG system, one of the essential services providing convenience to audiences, is proposed in this paper. Collaborative filtering method with multi-step filtering is used in EPG to recommend contents according to the preference of audience groups with similar preference. To implement our designed TV contents recommendation EPG, we prefer DiTV and use JavaXlet programming based on MHP. The European DVB-MHP specification will be also our domestic standard in DiTV. Finally, the result is verified by OpenMHP emulator.

  • PDF

A Study on the Application of EduTech for Multicultur al People (다문화 구성원을 위한 에듀테크 적용 방안에 관한 연구)

  • Back, Seungcheol;Jo, Sunghye;Kim, Namhee;Choi, Mikyung;Noh, Kyoo-Sung
    • Journal of Digital Convergence
    • /
    • v.14 no.3
    • /
    • pp.55-62
    • /
    • 2016
  • Today, demand for job training of married immigrants is increasing. This research aims to propose developmental Edu-Tech based on the demand for education contents and the characteristics of multicultural family. Based on analysis such as FGI(focus group interview) and expert interview, this paper presents a four methods for development of EduTech for multicultural people, such as language skills, the recommendation technology of customized training contents, contents design based on gamification and user experience design. This research contributes to the direction of the method to use EduTech as a tool for gaps in education and welfare state.

Improving Performance of Recommendation Systems Using Topic Modeling (사용자 관심 이슈 분석을 통한 추천시스템 성능 향상 방안)

  • Choi, Seongi;Hyun, Yoonjin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.101-116
    • /
    • 2015
  • Recently, due to the development of smart devices and social media, vast amounts of information with the various forms were accumulated. Particularly, considerable research efforts are being directed towards analyzing unstructured big data to resolve various social problems. Accordingly, focus of data-driven decision-making is being moved from structured data analysis to unstructured one. Also, in the field of recommendation system, which is the typical area of data-driven decision-making, the need of using unstructured data has been steadily increased to improve system performance. Approaches to improve the performance of recommendation systems can be found in two aspects- improving algorithms and acquiring useful data with high quality. Traditionally, most efforts to improve the performance of recommendation system were made by the former approach, while the latter approach has not attracted much attention relatively. In this sense, efforts to utilize unstructured data from variable sources are very timely and necessary. Particularly, as the interests of users are directly connected with their needs, identifying the interests of the user through unstructured big data analysis can be a crew for improving performance of recommendation systems. In this sense, this study proposes the methodology of improving recommendation system by measuring interests of the user. Specially, this study proposes the method to quantify interests of the user by analyzing user's internet usage patterns, and to predict user's repurchase based upon the discovered preferences. There are two important modules in this study. The first module predicts repurchase probability of each category through analyzing users' purchase history. We include the first module to our research scope for comparing the accuracy of traditional purchase-based prediction model to our new model presented in the second module. This procedure extracts purchase history of users. The core part of our methodology is in the second module. This module extracts users' interests by analyzing news articles the users have read. The second module constructs a correspondence matrix between topics and news articles by performing topic modeling on real world news articles. And then, the module analyzes users' news access patterns and then constructs a correspondence matrix between articles and users. After that, by merging the results of the previous processes in the second module, we can obtain a correspondence matrix between users and topics. This matrix describes users' interests in a structured manner. Finally, by using the matrix, the second module builds a model for predicting repurchase probability of each category. In this paper, we also provide experimental results of our performance evaluation. The outline of data used our experiments is as follows. We acquired web transaction data of 5,000 panels from a company that is specialized to analyzing ranks of internet sites. At first we extracted 15,000 URLs of news articles published from July 2012 to June 2013 from the original data and we crawled main contents of the news articles. After that we selected 2,615 users who have read at least one of the extracted news articles. Among the 2,615 users, we discovered that the number of target users who purchase at least one items from our target shopping mall 'G' is 359. In the experiments, we analyzed purchase history and news access records of the 359 internet users. From the performance evaluation, we found that our prediction model using both users' interests and purchase history outperforms a prediction model using only users' purchase history from a view point of misclassification ratio. In detail, our model outperformed the traditional one in appliance, beauty, computer, culture, digital, fashion, and sports categories when artificial neural network based models were used. Similarly, our model outperformed the traditional one in beauty, computer, digital, fashion, food, and furniture categories when decision tree based models were used although the improvement is very small.

A Customer Segmentation Scheme Base on Big Data in a Bank (빅데이터를 활용한 은행권 고객 세분화 기법 연구)

  • Chang, Min-Suk;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.85-91
    • /
    • 2018
  • Most banks use only demographic information such as gender, age, occupation and address to segment customers, but they do not reflect financial behavior patterns of customers. In this study, we aim to solve the problems by using various big data in a bank and to develop customer segmentation method which can be widely used in many banks in the future. In this paper, we propose an approach of segmenting clustering blocks with bottom-up method. This method has an advantage that it can accurately reflect various financial needs of customers based on various transaction patterns, channel contact patterns, and existing demographic information. Based on this, we will develop various marketing models such as product recommendation, financial need rating calculation, and customer churn-out prediction based on this, and we will adapt this models for the marketing strategy of NH Bank.

Collaborative Tag-based Filtering for Recommender Systems (효과적인 추천 시스템을 위한 협업적 태그 기반의 여과 기법)

  • Yeon, Cheol;Ji, Ae-Ttie;Kim, Heung-Nam;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.2
    • /
    • pp.157-177
    • /
    • 2008
  • Even in a single day, an enormous amount of content including digital videos, posts, photographs, and wikis are generated on the web. It's getting more difficult to recommend to a user what he/she prefers among these contents because of the difficulty of automatically grasping of content's meanings. CF (Collaborative Filtering) is one of useful methods to recommend proper content to a user under these situations because the filtering process is only based on historical information about whether or not a target user has preferred an item before. Collaborative Tagging is the process that allows many users to annotate content with descriptive tags. Recommendation using tags can partially improve, such as the limitations of CF, the sparsity and cold-start problem. In this research, a CF method with user-created tags is proposed. Collaborative tagging is employed to grasp and filter users' preferences for items. Empirical demonstrations using real dataset from del.icio.us show that our algorithm obtains improved performance, compared with existing works.

  • PDF

An Extended Dynamic Web Page Recommendation Algorithm Based on Mining Frequent Traversal Patterns (빈발 순회패턴 탐사에 기반한 확장된 동적 웹페이지 추천 알고리즘)

  • Lee KeunSoo;Lee Chang Hoon;Yoon Sun-Hee;Lee Sang Moon;Seo Jeong Min
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.9
    • /
    • pp.1163-1176
    • /
    • 2005
  • The Web is the largest distributed information space but, the individual's capacity to read and digest contents is essentially fixed. In these Web environments, mining traversal patterns is an important problem in Web mining with a host of application domains including system design and information services. Conventional traversal pattern mining systems use the inter-pages association in sessions with only a very restricted mechanism (based on vector or matrix) for generating frequent K-Pagesets. We extend a family of novel algorithms (termed WebPR - Web Page Recommend) for mining frequent traversal patterns and then pageset to recommend. We add a WebPR(A) algorithm into a family of WebPR algorithms, and propose a new winWebPR(T) algorithm introducing a window concept on WebPR(T). Including two extended algorithms, our experimentation with two real data sets, including LadyAsiana and KBS media server site, clearly validates that our method outperforms conventional methods.

  • PDF