• Title/Summary/Keyword: Contents Recommendation Method

Search Result 161, Processing Time 0.026 seconds

A Research on Image Metadata Extraction through YCrCb Color Model Analysis for Media Hyper-personalization Recommendation (미디어 초개인화 추천을 위한 YCrCb 컬러 모델 분석을 통한 영상의 메타데이터 추출에 대한 연구)

  • Park, Hyo-Gyeong;Yong, Sung-Jung;You, Yeon-Hwi;Moon, Il-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.277-280
    • /
    • 2021
  • Recently as various contents are mass produced based on high accessibility, the media contents market is more active. Users want to find content that suits their taste, and each platform is competing for personalized recommendations for content. For an efficient recommendation system, high-quality metadata is required. Existing platforms take a method in which the user directly inputs the metadata of an image. This will waste time and money processing large amounts of data. In this paper, for media hyperpersonalization recommendation, keyframes are extracted based on the YCrCb color model of the video based on movie trailers, movie genres are distinguished through supervised learning of artificial intelligence and In the future, we would like to propose a utilization plan for generating metadata.

  • PDF

A Study on the User Experience according to the Method and Detail of Recommendation Agent's Explanation Facilities (추천 에이전트의 설명 방식과 상세도에 따른 사용자 경험 차이에 관한 연구)

  • Kang, Chan-Young;Kim, Hyek;Kang, Hyun-Min
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.8
    • /
    • pp.653-665
    • /
    • 2020
  • As the use of recommended agents has become more active, the "Explain Facilities" is drawing attention as a way to solve the black-box problem that could not explain internal logic to users. This study wants to look at how the description Method and Detail affects to user experience. The Explanation method was divided into 'why the agent did a particular action' and 'why not do a particular action' and the detail condition were divided into 'high or low'. Studies have found that 'why method' have a positive effect on users' transparency, trust, satisfaction, and behavioral intention to use, and 'high detail condition' higher the user' Psychological reactance. In addition, it was found that the explanation methods and detail influenced the 'Explanation' perception through interaction and tended to affect satisfaction and intention to adopt recommendation. This study suggested that careful attention is needed to determine the method and detail of the Explanation facilities in the context of the recommended agent, based on the research findings that it affects the user experience through the interaction of the method and detail.

A Study on Correlation Analysis and Preference Prediction for Point-of-Interest Recommendation (Point-of-Interest 추천을 위한 매장 간 상관관계 분석 및 선호도 예측 연구)

  • Park, So-Hyun;Park, Young-Ho;Park, Eun-Young;Ihm, Sun-Young
    • Journal of Digital Contents Society
    • /
    • v.19 no.5
    • /
    • pp.871-880
    • /
    • 2018
  • Recently, the technology of recommendation of POI (Point of Interest) related technology is getting attention with the increase of big data related to consumers. Previous studies on POI recommendation systems have been limited to specific data sets. The problem is that if the study is carried out with this particular dataset, it may be suitable for the particular dataset. Therefore, this study analyzes the similarity and correlation between stores using the user visit data obtained from the integrated sensor installed in Seoul and Songjeong roads. Based on the results of the analysis, we study the preference prediction system which recommends the stores that new users are interested in. As a result of the experiment, various similarity and correlation analysis were carried out to obtain a list of relevant stores and a list of stores with low relevance. In addition, we performed a comparative experiment on the preference prediction accuracy under various conditions. As a result, it was confirmed that the jacquard similarity based item collaboration filtering method has higher accuracy than other methods.

A Personalized Recommender System for Mobile Commerce Applications (모바일 전자상거래 환경에 적합한 개인화된 추천시스템)

  • Kim, Jae-Kyeong;Cho, Yoon-Ho;Kim, Seung-Tae;Kim, Hye-Kyeong
    • Asia pacific journal of information systems
    • /
    • v.15 no.3
    • /
    • pp.223-241
    • /
    • 2005
  • In spite of the rapid growth of mobile multimedia contents market, most of the customers experience inconvenience, lengthy search processes and frustration in searching for the specific multimedia contents they want. These difficulties are attributable to the current mobile Internet service method based on inefficient sequential search. To overcome these difficulties, this paper proposes a MOBIIe COntents Recommender System for Movie(MOBICORS-Movie), which is designed to reduce customers' search efforts in finding desired movies on the mobile Internet. MOBICORS-Movie consists of three agents: CF(Collaborative Filtering), CBIR(Content-Based Information Retrieval) and RF(Relevance Feedback). These agents collaborate each other to support a customer in finding a desired movie by generating personalized recommendations of movies. To verify the performance of MOBICORS-Movie, the simulation-based experiments were conducted. The results from this experiments show that MOBICORS-Movie significantly reduces the customer's search effort and can be a realistic solution for movie recommendation in the mobile Internet environment.

Personalized Bookmark Search Word Recommendation System based on Tag Keyword using Collaborative Filtering (협업 필터링을 활용한 태그 키워드 기반 개인화 북마크 검색 추천 시스템)

  • Byun, Yeongho;Hong, Kwangjin;Jung, Keechul
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.11
    • /
    • pp.1878-1890
    • /
    • 2016
  • Web 2.0 has features produced the content through the user of the participation and share. The content production activities have became active since social network service appear. The social bookmark, one of social network service, is service that lets users to store useful content and share bookmarked contents between personal users. Unlike Internet search engines such as Google and Naver, the content stored on social bookmark is searched based on tag keyword information and unnecessary information can be excluded. Social bookmark can make users access to selected content. However, quick access to content that users want is difficult job because of the user of the participation and share. Our paper suggests a method recommending search word to be able to access quickly to content. A method is suggested by using Collaborative Filtering and Jaccard similarity coefficient. The performance of suggested system is verified with experiments that compare by 'Delicious' and "Feeltering' with our system.

A recommendation algorithm which reflects tag and time information of social network (소셜 네트워크의 태그와 시간 정보를 반영한 추천 알고리즘)

  • Jo, Hyeon;Hong, Jong-Hyun;Choeh, Joon Yeon;Kim, Soung Hie
    • Journal of Internet Computing and Services
    • /
    • v.14 no.2
    • /
    • pp.15-24
    • /
    • 2013
  • In recent years, the number of social network system has grown rapidly. Among them, social bookmarking system(SBS) is one of the most popular systems. SBS provides network platform which users can share and manage various types of online resources by using tags. In SBS, it can be possible to reflect tag and time in order to enhance the quality of personalized recommendation. In this paper, we proposed recommender system which reflect tag and time at weight generation and similarity calculation. Also we adapted proposed method to real dataset and the result of experiment showed that the our method offers better performance when such information is integrated.

Collaborative Filtering with Improved Quantification Process for Real-time Context Information (실시간 컨텍스트 정보의 정량화 단계를 개선한 협력적 필터링)

  • Lee, Se-Il;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.488-493
    • /
    • 2007
  • In general, recommendation systems quantify real-time context information obtained in the stage of collaborative filtering and use quantified context information in order to recommend services. But the recommendation systems can have problems of recommending inaccurate information because of lack of context information or classifying users into inaccurate groups because of simple classification works in the stage of quantification. In this paper, we solved the problems of lack of context information obtained in real-time by combining users' profile information used in the contents-based filtering and context information obtained in real-time. In addition, we tried collaborative filtering at the quantification stage by improving absolute classification methods to relative ones. As the result of experiments, this method improved prediction preference by 5.8% than real-time recommendation systems using context information in pure P2P environment.

Development of Smart Senior Classification Model based on Activity Profile Using Machine Learning Method (기계 학습 방법을 이용한 활동 프로파일 기반의 스마트 시니어 분류 모델 개발)

  • Yun, You-Dong;Yang, Yeong-Wook;Ji, Hye-Sung;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.1
    • /
    • pp.25-34
    • /
    • 2017
  • With the recent spread of smartphones and the introduction of web services, online users can access large-scale content regardless of time or place. However, users have had trouble finding the content they wanted among large-scale content. To solve this problem, user modeling and content recommendation system have been actively studied in various fields. However, in spite of active changes in senior groups according to the changes in information environment, research on user modeling and content recommendation system focused on senior groups are insufficient. In this paper, we propose a method of modeling smart senior based on their preference, and further develop a smart senior classification model using machine learning methods. As a result, we can not only grasp the preferences of smart seniors, but also develop a smart senior classification model, which is the foundation for the research of a recommendation system which will provide the activities and contents most suitable for senior groups.

Travel Route Recommendation Utilizing Social Big Data

  • Yu, Yang Woo;Kim, Seong Hyuck;Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.117-125
    • /
    • 2022
  • Recently, as users' interest for travel increases, research on a travel route recommendation service that replaces the cumbersome task of planning a travel itinerary with automatic scheduling has been actively conducted. The most important and common goal of the itinerary recommendations is to provide the shortest route including popular tour spots near the travel destination. A number of existing studies focused on providing personalized travel schedules, where there was a problem that a survey was required when there were no travel route histories or SNS reviews of users. In addition, implementation issues that need to be considered when calculating the shortest path were not clearly pointed out. Regarding this, this paper presents a quantified method to find out popular tourist destinations using social big data, and discusses problems that may occur when applying the shortest path algorithm and a heuristic algorithm to solve it. To verify the proposed method, 63,000 places information was collected from the Gyeongnam province and big data analysis was performed for the places, and it was confirmed through experiments that the proposed heuristic scheduling algorithm can provide a timely response over the real data.

Development of Apparel Coordination System Using Personalized Preference on Semantic Web (시맨틱 웹에서 개인화된 선호도를 이용한 의상 코디 시스템 개발)

  • Eun, Chae-Soo;Cho, Dong-Ju;Lee, Jung-Hyun;Jung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.4
    • /
    • pp.66-73
    • /
    • 2007
  • Internet is a part of our common life and tremendous information is cumulated. In these trends, the personalization becomes a very important technology which could find exact information to present users. Previous personalized services use content based filtering which is able to recommend by analyzing the content and collaborative filtering which is able to recommend contents according to preference of users group. But, collaborative filtering needs the evaluation of some amount of data. Also, It cannot reflect all data of users because it recommends items based on data of some users who have similar inclination. Therefore, we need a new recommendation method which can recommend prefer items without preference data of users. In this paper, we proposed the apparel coordination system using personalized preference on the semantic web. This paper provides the results which this system can reduce the searching time and advance the customer satisfaction measurement according to user's feedback to system.