• 제목/요약/키워드: Content-based image retrieval (CBIR)

검색결과 87건 처리시간 0.024초

An approach for improving the performance of the Content-Based Image Retrieval (CBIR)

  • Jeong, Inseong
    • 한국측량학회지
    • /
    • 제30권6_2호
    • /
    • pp.665-672
    • /
    • 2012
  • Amid rapidly increasing imagery inputs and their volume in a remote sensing imagery database, Content-Based Image Retrieval (CBIR) is an effective tool to search for an image feature or image content of interest a user wants to retrieve. It seeks to capture salient features from a 'query' image, and then to locate other instances of image region having similar features elsewhere in the image database. For a CBIR approach that uses texture as a primary feature primitive, designing a texture descriptor to better represent image contents is a key to improve CBIR results. For this purpose, an extended feature vector combining the Gabor filter and co-occurrence histogram method is suggested and evaluated for quantitywise and qualitywise retrieval performance criterion. For the better CBIR performance, assessing similarity between high dimensional feature vectors is also a challenging issue. Therefore a number of distance metrics (i.e. L1 and L2 norm) is tried to measure closeness between two feature vectors, and its impact on retrieval result is analyzed. In this paper, experimental results are presented with several CBIR samples. The current results show that 1) the overall retrieval quantity and quality is improved by combining two types of feature vectors, 2) some feature is better retrieved by a specific feature vector, and 3) retrieval result quality (i.e. ranking of retrieved image tiles) is sensitive to an adopted similarity metric when the extended feature vector is employed.

An Approach for the Cross Modality Content-Based Image Retrieval between Different Image Modalities

  • Jeong, Inseong;Kim, Gihong
    • 한국측량학회지
    • /
    • 제31권6_2호
    • /
    • pp.585-592
    • /
    • 2013
  • CBIR is an effective tool to search and extract image contents in a large remote sensing image database queried by an operator or end user. However, as imaging principles are different by sensors, their visual representation thus varies among image modality type. Considering images of various modalities archived in the database, image modality difference has to be tackled for the successful CBIR implementation. However, this topic has been seldom dealt with and thus still poses a practical challenge. This study suggests a cross modality CBIR (termed as the CM-CBIR) method that transforms given query feature vector by a supervised procedure in order to link between modalities. This procedure leverages the skill of analyst in training steps after which the transformed query vector is created for the use of searching in target images with different modalities. Current initial results show the potential of the proposed CM-CBIR method by delivering the image content of interest from different modality images. Despite its retrieval capability is outperformed by that of same modality CBIR (abbreviated as the SM-CBIR), the lack of retrieval performance can be compensated by employing the user's relevancy feedback, a conventional technique for retrieval enhancement.

An Emotion-based Image Retrieval System by Using Fuzzy Integral with Relevance Feedback

  • Lee, Joon-Whoan;Zhang, Lei;Park, Eun-Jong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.683-688
    • /
    • 2008
  • The emotional information processing is to simulate and recognize human sensibility, sensuality or emotion, to realize natural and harmonious human-machine interface. This paper proposes an emotion-based image retrieval method. In this method, user can choose a linguistic query among some emotional adjectives. Then the system shows some corresponding representative images that are pre-evaluated by experts. Again the user can select a representative one among the representative images to initiate traditional content-based image retrieval (CBIR). By this proposed method any CBIR can be easily expanded as emotion-based image retrieval. In CBIR of our system, we use several color and texture visual descriptors recommended by MPEG-7. We also propose a fuzzy similarity measure based on Choquet integral in the CBIR system. For the communication between system and user, a relevance feedback mechanism is used to represent human subjectivity in image retrieval. This can improve the performance of image retrieval, and also satisfy the user's individual preference.

  • PDF

A Novel Image Classification Method for Content-based Image Retrieval via a Hybrid Genetic Algorithm and Support Vector Machine Approach

  • Seo, Kwang-Kyu
    • 반도체디스플레이기술학회지
    • /
    • 제10권3호
    • /
    • pp.75-81
    • /
    • 2011
  • This paper presents a novel method for image classification based on a hybrid genetic algorithm (GA) and support vector machine (SVM) approach which can significantly improve the classification performance for content-based image retrieval (CBIR). Though SVM has been widely applied to CBIR, it has some problems such as the kernel parameters setting and feature subset selection of SVM which impact the classification accuracy in the learning process. This study aims at simultaneously optimizing the parameters of SVM and feature subset without degrading the classification accuracy of SVM using GA for CBIR. Using the hybrid GA and SVM model, we can classify more images in the database effectively. Experiments were carried out on a large-size database of images and experiment results show that the classification accuracy of conventional SVM may be improved significantly by using the proposed model. We also found that the proposed model outperformed all the other models such as neural network and typical SVM models.

CBIR 기반 데이터 확장을 이용한 딥 러닝 기술 (CBIR-based Data Augmentation and Its Application to Deep Learning)

  • 김세송;정승원
    • 방송공학회논문지
    • /
    • 제23권3호
    • /
    • pp.403-408
    • /
    • 2018
  • 딥 러닝의 학습을 위해서 일반적으로 많은 양의 데이터가 필요하다. 그러나 많은 양의 데이터 세트를 만드는 것은 쉽지 않기 때문에, 회전, 반전 (flipping), 필터링 (filtering) 등의 간단한 데이터 확장 (data augmentation) 기법을 통해 작은 데이터 세트를 좀 더 큰 데이터 세트로 만드는 여러 시도들이 있었다. 그러나 이러한 기법들은 이미 보유하고 있는 데이터 세트만을 이용하기 때문에 확장성에 제약을 갖는다. 이런 문제를 해결하기 위해 본고에서는 보유하고 있는 영상 데이터를 이용하여 새로운 영상 데이터를 획득하는 기술을 제안한다. 이는 기존 데이터 세트의 영상 데이터를 CBIR(Contents based image retrieval)의 쿼리로 이용하여 유사 영상들을 검색하여 획득하는 방식으로 이루어진다. 최종적으로 CBIR을 이용해 확장한 데이터를 딥 러닝으로 학습시켜 확장 전후의 성능을 비교하였다.

An Effective WSSENet-Based Similarity Retrieval Method of Large Lung CT Image Databases

  • Zhuang, Yi;Chen, Shuai;Jiang, Nan;Hu, Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2359-2376
    • /
    • 2022
  • With the exponential growth of medical image big data represented by high-resolution CT images(CTI), the high-resolution CTI data is of great importance for clinical research and diagnosis. The paper takes lung CTI as an example to study. Retrieving answer CTIs similar to the input one from the large-scale lung CTI database can effectively assist physicians to diagnose. Compared with the conventional content-based image retrieval(CBIR) methods, the CBIR for lung CTIs demands higher retrieval accuracy in both the contour shape and the internal details of the organ. In traditional supervised deep learning networks, the learning of the network relies on the labeling of CTIs which is a very time-consuming task. To address this issue, the paper proposes a Weakly Supervised Similarity Evaluation Network (WSSENet) for efficiently support similarity analysis of lung CTIs. We conducted extensive experiments to verify the effectiveness of the WSSENet based on which the CBIR is performed.

NPFAM: Non-Proliferation Fuzzy ARTMAP for Image Classification in Content Based Image Retrieval

  • Anitha, K;Chilambuchelvan, A
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권7호
    • /
    • pp.2683-2702
    • /
    • 2015
  • A Content-based Image Retrieval (CBIR) system employs visual features rather than manual annotation of images. The selection of optimal features used in classification of images plays a key role in its performance. Category proliferation problem has a huge impact on performance of systems using Fuzzy Artmap (FAM) classifier. The proposed CBIR system uses a modified version of FAM called Non-Proliferation Fuzzy Artmap (NPFAM). This is developed by introducing significant changes in the learning process and the modified algorithm is evaluated by extensive experiments. Results have proved that NPFAM classifier generates a more compact rule set and performs better than FAM classifier. Accordingly, the CBIR system with NPFAM classifier yields good retrieval.

An interactive image retrieval system: from symbolic to semantic

  • Lan Le Thi;Boucher Alain
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.427-434
    • /
    • 2004
  • In this paper, we present a overview of content-based image retrieval (CBIR) systems: its results and its problems. We propose our CBIR system currently based on color and texture. From the CBIR systems. we discuss the way to add semantic values in image retrieval systems. There are 3 ways for adding them: concept definition, machine learning and man-machine interaction. Along with this we introduce our preliminary results and discuss them in the goal of reaching semantic retrieval. Different result representation schemes are presented. At last, we present our work to build a complete annotated image database and our image annotaion program.

  • PDF

회전불변 Gabor 필터를 이용한 영상검색 (Image Retrieval using Rotation Invariant Gabor Filter)

  • 김동훈;신대규;김현술;정태윤;박상희
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권7호
    • /
    • pp.323-326
    • /
    • 2002
  • As multimedia database and digital image libraries are enlarged, CBIR(Content Based Image Retrieval) has been getting importance for the efficient search. Generally, CBIR uses primitive features such as color, shape, texture and so on. Among various methods of CBIR, Gabor wavelet has good image retrieval performance with texture features but it has a disadvantage which does not perform well for a rotated image because of its direction oriented filter. In this paper, we propose a new method to solve this problem by modifying Gabor filter for all directions. And then we will compare the searching performance of the proposed method with those of conventional image retrieval methods through experiments with trademarks.

내용기반 영상검색 시스템의 분석 및 발전 방안 (Anatomy of Current Issues on Content-Based Image Retrieval)

  • ;;박동원;안성옥
    • 컴퓨터교육학회논문지
    • /
    • 제6권4호
    • /
    • pp.31-36
    • /
    • 2003
  • 내용기반 영상검색 분야에서의 활발한 연구로 지난 수년간 기술과 성능 면에서 괄목할 성장을 이룩해 내었다. 본 논문에서는 기존의 영상검색 시스템을 체계적으로 분석하여 아직까지 남아있는 취약점 및 개선 부분에 대하여 기술하였다. 특히, 의미론적 영상검색에 대하여 주안점을 두어 시스템 향상을 위하여 심도있게 연구가 진행 되어야 할 분야의 방향 및 주제를 분류하고 분석하여 제안하였다.

  • PDF