• Title/Summary/Keyword: Contamination by turbid water

Search Result 4, Processing Time 0.015 seconds

Development of the Processing System for Pre-washed Rice

  • Choi H. S.;Cho K. H.;Park H. M.;Kim Y. H.;Keum D. H.
    • Agricultural and Biosystems Engineering
    • /
    • v.5 no.2
    • /
    • pp.60-63
    • /
    • 2004
  • Demand for development of processing systems for pre-washed rice and propagation of the systems has recently been on the rise, because rice-cooking requires watering 15 times the rice quantity to cook, as in case of the regular rice currently being circulated in Korean market, in addition to paying the trouble of washing it for cooking, and besides the milky turbid water coming from the rice-washing contributes to water contamination. In this study, therefore, a processing system for pre-washed rice was designed and built with rice surface polishing devices that adopted abrading and airing methods, an electrostatic method and a method using a fine watering, to conduct its performance test. The result showed that turbidity of the wash water, which is the base to determine the pre-washed rice standard, turned out 47.33 ppm and 48.00 ppm respectively for 800 kg/hr and 1,000 kg/hr supplies, which meets the standard for the processing system free from rice-washing for cooking. The quantity of watering at this experiment was only 0.43 times the rice, thus resulting in curtailment of process-watering by approximately $69\%$ compared with the existing wet-type pre-washed rice processing system popular in Korean market.

  • PDF

Application of SPOT 5 Satellite Image and Landcover Map for the examination of Soil Erosion Source Area (토사유실 원인지역 검토를 위한 SPOT 5 위성영상과 토지피복도의 활용)

  • Lee, Geun-Sang;Park, Jin-Hyeog;Hwang, Eui-Ho;Koh, Deuk-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.11
    • /
    • pp.927-935
    • /
    • 2005
  • Soil erosion by rainfall is important factor for basin management because it reduces reservoir capacity and breaks out the contamination of water caused by turbid water. Recently, soil erosion study with GIS is in progress but does not consider soil erosion source area. This study calculated soil erosion amount using GIS-based soil erosion model in Imha basin and examined soil erosion source area using SPOT 5 High-resolution satellite image and land cover map. As a result of analysis, dry field showed high-density soil erosion area and we could easily investigate source area using satellite image. Also we could examine the suitability of soil erosion area by applying field survey method in common areas such as dry field and orchard area those are difficult to confirm soil erosion source area using satellite image.

Evaluation of Groundwater Level Decline and Water Quality Due to Tunnel Excavation (터널굴착으로 인한 지하수위 저하 및 수질영향 평가)

  • Kim, Min Gyu;Kim, Minsoo;Jeong, Gyocheol;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.113-122
    • /
    • 2019
  • In this study, the flow analysis to evaluate the extent of groundwater decline and the effect of the small valleys caused by the decrease of groundwater level in the construction of road tunnel, and the pollutant movement analysis to evaluate pollution of nearby water source by pollutant discharge during tunnel construction, respectively. The decrease of the groundwater during the 30 month tunnel excavation period was maximum 27 m and it was found to be the largest within 50 m from the tunnel center. The flow of groundwater is shown in the form of flowing into the tunnels and the effects of groundwater level decline were observed up to a tunnel radius of 200 m. As a result of the numerical modeling of the contaminant transport to examine the influence of the polluted water discharge from the tunnel, the range of the turbid water generated at the end of the tunnel is up to 120 m and it is estimated that the risk of contamination of the small river is not large.

Optimum Scale Evaluation of Sedment Basin Design by Soil Erosion Estimation at Small Basin (소유역의 토사유실량에 따른 유사저류지 설계적정성 검토)

  • Lee, Sang-Jin;Choi, Hyun;Kwak, Young-Joo;Lee, Bae-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.25-31
    • /
    • 2007
  • The recent frequent heavy rainfall has caused an increased in soil erosion and the soil drain which drained soil has caused decreased in channel radius and environmental problems by turbidity. In this study, the optimum size of the sediment basin was tested with soil erosion estimated from the Universal Soil Loss Equation (USLE) in the basin using by GIS data. The results show that the estimated soil erosion and the designed soil deposit are $72.1\;m^3$ and $85.0\;m^3$ respectively and the size of sediment basin is proper. In this study the water depth was calculated from the Hec-Ras model to test the stability of the bank and to prove submersion of the inside fields from stream overflow.

  • PDF