• Title/Summary/Keyword: Contaminated sediments

Search Result 203, Processing Time 0.021 seconds

Sediment Toxicity of Industrialized Coastal Areas of Korea Using Bioluminescent Marine Bacteria

  • Choi, Min-Kyu;Kim, Seong-Gil;Yoon, Sang-Pil;Jung, Rae-Hong;Moon, Hyo-Bang;Yu, Jun;Choi, Hee-Gu
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.3
    • /
    • pp.244-253
    • /
    • 2010
  • The quality of marine sediments from the industrialized coastal areas of Korea (Ulsan Bay, Masan Bay, and artificial Lake Shihwa) was investigated using a bacterial bioluminescence toxicity test. Sediment toxicity results were compared with the levels of chemical contamination (trace metals, organic wastewater markers, acid volatile sulfides, total organic carbon). Effective concentration 50% (EC50) of sediments ranged from 0.014 to 1.126 mg/mL, which is comparable to or lower than values in contaminated lakes, rivers, and marine sediments of other countries. Sediment reference index (SRI) ranged from 13 to 1044, based on the EC50 of the negative control sample. Mean average SRI values in Masan Bay and Lake Shihwa were approximately 8 and 9 times as high as that in Ulsan Bay, indicating higher sediment toxicity and greater contamination in the two former regions. Sediment toxicity were strongly associated with the concentrations of some chemicals, suggesting that this test may be useful for determining potential chemical contamination in sediments.

Concentration of metallic elements in surface sediments at a waste disposal site in the Yellow Sea (황해 폐기물 투기해역(서해병) 표층 퇴적물의 금속원소 분포)

  • Koh, Hyuk-Joon;Choi, Young-Chan;Park, Sung-Eun;Cha, Hyung-Kee;Chang, Dae-Soo;Lee, Chung-Il;Yoon, Han-Sam
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.787-799
    • /
    • 2013
  • The aim of this study was to investigate the accumulation of metallic elements and the control effect of marine pollution caused by ocean dumping in the sediments at a waste disposal area in the Yellow Sea. In July 2009, concentrations of organic matter and metallic elements (Al, Fe, As, Cd, Cr, Co, Hg, Ni, Mn, Pb, and Zn) were measured in surface sediments at the site. The ignition loss (IL) in the surface sediments showed a mean value of 15.4%, about 1.5 times higher than the mean value of the sediments in the coastal areas of Korea. The chemical oxygen demand (COD) at some disposal sites exceeded 20 mg $O_2/g{\cdot}dry$, which signifies the initial concentration of marine sediment pollutants in Japan. The disposal sites contain higher concentrations of Cr, Cu and Zn than the sediments of bays and estuaries that might be contaminated. The magnitude of both metal enrichment factors (EF) and adverse biological effects suggest that pollution with Cr and Ni occurred due to the dumping of waste in the study area. In addition, the geoaccumulation index (Igeo) showed that the surface sediments were moderately contaminated. By the mid-2000s, when the amount of waste dumped at this site was the highest, the concentration of metallic elements was higher than ever recorded. On the other hand, in 2008-09, the need for environmental management was relatively low compare with the peak. As a result, the quality of marine sediment has been enhanced, considering the effect of waste reduction and natural dilution in the disposal area.

Toxicity test of wetland sediments by Simocephalus mixtus (국내종 물벼룩 Simocephalus mixtus에 의한 습지퇴적물 독성도 측정)

  • 이찬원;권영택;윤종섭;문성원
    • Journal of Environmental Science International
    • /
    • v.11 no.9
    • /
    • pp.851-855
    • /
    • 2002
  • A comparison of Daphnia magna, Ceriodaphnia dubia and Simocephalus mixtus toxicity test was performed to study the relative sensitivities and discrimination abilities with both pore and elutriate water of Woopo wetland sediments. Sediment risk assessment has been done by standardized preparation method of pore and elutriate water described in the joint US EPA-US Army Crops of Engineers manual. Simocephalus mixtus which was obtained from Woopo wetlands in Korea was cultured and applied to sediment toxicity test. Water quality in Woopo wetland had great site and seasonal variations. S. mixtus was more sensitive than D. magna in heavy metal toxicity test. The toxicity results with S. mixtus reflected the water quality of elutriate and pore water. The results also suggested that S. mixtus could be used as a test organism in estimating potential risk of contaminated sediments.

Environmental Standards for Beneficial Uses of Dredged Materials (준설토 활용과 환경기준)

  • Yoon, Gil-Lim;Lee, Chan-Won;Jeong, Woo-Seob
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.247-258
    • /
    • 2008
  • Environmental standards for beneficial uses of dredged materials are proposed. Even though chemical analysis of ocean sediments are carried out frequently, their analyses results were not interrelated with the effects of biological lives due to a shortage of biological data. These facts have resulted in difficulty to develope Korean's standards of recycling dredged materials. This paper first searched existing current foreign standards, analyzed local contaminated ocean sediment data, identified their main chemical components of contaminants, and then compared with clean-up standards of sediments consisting of lower and higher levels. From these analysis, new environmental standards considering Korean domestic circumstances are proposed. It is judged that new standards are appropriate to both Korean national sedimental environments and economically recycling aspects because environmental standard levels proposed are higher than background levels of sediments in Korean and foreign standards.

  • PDF

Heavy Metals in Fine-Grained Bed Sediments of the Mangyeong River, Korea (만경강 퇴적물의 중금속 함량 및 분포)

  • Cho, Yeong-Gil
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.657-664
    • /
    • 2007
  • The content and distribution of some heavy metals (Fe, Mn, Cr, Co, Cu, Ni, Zn and Pb) were investigated in the <$63{\mu}m$ bed sediments of the Mangyeong river to recognize the extent of contamination. Results showed that a wide range of concentrations was apparent for every metal. These variations were particularly significant at the confluence of tributaries. High levels of metals occur mainly in the confluence of tributaries. Geoaccumulation indexes have been calculated to assess whether the concentration observed represent background or contaminated levels. It is proved that the Mangyeong River is moderately to strongly polluted for Mn, Cr, Cu, Zn and Pb. The spatial extent of pollution was examined, and it was found that the most polluted area is located in the confluence of Iksan and Jeonju tributaries.

Contamination Level and Behavior of Heavy Metals in Stream Sediments Within the Watershed of Juam Reservoir (주암댐 집수유역 내 하상퇴적물의 중금속 오염현황 및 거동 특성)

  • 염승준;이평구;강민주;신성천;유연희
    • Economic and Environmental Geology
    • /
    • v.37 no.3
    • /
    • pp.311-324
    • /
    • 2004
  • We investigated the contamination and behavior of heavy metals in stream sediments within the watershed of Juam Reservoir. Many abandoned mines within the reservoir can act as a potential contaminant source for water quality. Heavy metal concentrations (Cr, Cu, Ni, Pb and Zn) in stream sediments from watershed are very low, indicating that content of heavy metals in the sediments probably do not affect the water quality in Juam Reservoir. However Pb concentration in the stream sediments increases downward streams, suggesting the possible diffusion of Pb contamination. According to the leaching ratio for stream sediments at a strong acidic condition in the abandoned mine areas, the relative mobility for metals decreases in the order of Pb>Zn=Cu>Ni>Cr, indicating that Pb can have a bad effect upon the water quality in Jum Reservoir. Moreover, if contaminated sediment is placed in the bottom of reservoir (i.e., reducing condition), the relative mobility of Pb is the highest, indicating that Pb in the bottom sediments can be leached to water at interface between water and sediment with changing in physicochemical conditions.