• Title/Summary/Keyword: Contaminated sediment

Search Result 220, Processing Time 0.028 seconds

Distribution and Human Risk Assessment of Polycyclic Aromatic Hydrocarbons and Polychlorinated Biphenyls in Sediments and Fish from Suyoung Estuary of Busan, Korea (부산 수영강 하구역의 퇴적물과 어류에서 다환방향족탄화수소 및 폴리염화비페닐의 농도분포와 인체 위해도 평가)

  • Lee, Bongmin;Yoon, Sera;Bak, Sihyeon;Lee, In-Seok;Choi, Minkyu
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.252-263
    • /
    • 2018
  • Distributions of 15 PAHs and 82 PCBs were investigated in sediment and fish samples collected from the Suyoung Estuary of Busan, one of the most urbanized and newly contaminated areas in Busan. The concentrations of $S_{15}PAH$ in sediments ranged from 17.9 to 777 ng/g-dry and were mainly originated from combustion processes. The concentrations of $S_{82}PCB$ in sediments ranged from 0.55 to 12.5 ng/g-dry and were significantly correlated with those of 12 dioxin-like PCBs and 6 non-dioxin like PCBs. Higher concentrations of PAHs and PCBs were found in the upper river and the inner Suyoung Bay than in marina and the outer Suyoung Bay. No sites exceeded the ecotoxicological values of PAHs and PCBs in marine sediments. Benzo[a]-pyrene was not detected in fish samples and the concentrations of $S_4PAH$ (0.15~0.45 ng/g-wet) were lower than the maximum level set by EU. The levels of PCBs in fish samples were at less than 1% of the Korean maximum level and 2% of the EU maximum level. The concentrations of dioxin-like PCBs were $0.01{\sim}0.32pg-TEQ_{WHO-2005}/g-wet$, and the highest concentration was found in eels, which were at less than 5% of the EU maximum level. Dietary intakes of PAHs and PCBs through fish consumption were estimated, and their lifetime cancer risk and non-cancer risk were much lower.

A Study on Chemical Compositions of Sediment and Surface Water in Nakdong River for Tracing Contaminants from Mining Activities (광해오염원 추적을 위한 낙동강 지역 퇴적물 및 하천수의 화학조성 연구)

  • Kim, Jiyun;Choi, Uikyu;Baek, Seung-Han;Choi, Hye-Bin;Lee, Jeonghoon
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.211-217
    • /
    • 2016
  • There have been found mine tailings, wastes, and mining drainage scattered in the area of Nakdong River due to the improper maintenance of the abandoned mines. These contaminants can flow into rivers during the heavy rain periods in summer. Along the study area beginning Seokpo-myeon, Bonghwa-gun of Gyeongsangbuk-do untill Dosan-myeon, Andong-si, there are one hundred five mines including sixty metalliferous mines and forty-five nonmetal mines, which can adversely affect the adjacent rivers. To verify the contamination, we collected sediments, seepage water and surface water for a year both in rainy season and dry season. This study found that sediments, containing high concentrations of heavy metals caused by mining activities, are dispersed throughout the entire river basin (68 sample points with pollution index, based on the concentration of trace element, (PI) >10 among the total of 101 samples). The results of river water analysis indicated the increased concentrations of arsenic and cadmium at branches from Seungbu, Sambo, Okbang and Janggun mine, which concerns that the river water may be contaminated by mining drainage and tailing sediments. However, it is difficult to sort out the exact sources of contamination in sediments and waters only by using the chemical compositions. Thus the control of mining pollution is challenging. To prevent water from being contaminated by mining activities, we should be able to divide inflow rates from each origin of the mines. Therefore, there should be a continued study about how to trace the source of contaminants from mining activities by analyzing stable isotopes.

Application of Activated Carbon and Crushed Concrete as Capping Material for Interrupting the Release of Nitrogen, Phosphorus and Organic Substance from Reservoir Sediments (저수지 퇴적물에서 질소, 인 및 유기물질 용출차단을 위한 활성탄과 폐콘크리트의 피복재로서 적용)

  • Kang, Ku;Kim, Won-Jae;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • This study aims to assess the effectiveness of activated carbon (AC) and crushed concrete (CC) as capping material to block the release of nitrogen, phosphorus, and organic substance from reservoir sediments. The efficiency of AC and CC as capping material was evaluated in a reactor in which a 1 or 3 cm thick layer of capping materials was placed on the sediments collected from Mansu reservoir in Anseong-city. Dissolved oxygen (DO) concentration, total nitrogen (T-N), total phosphorus (T-P), and chemical oxygen demand (COD) concentration in reservoir water above the uncapped sediments and capping material were monitored for 45 days. The release rate of T-N was in the following increasing order: AC 3 cm ($1.18mg/m^2{\cdot}d$) < CC 1 cm ($2.66mg/m^2{\cdot}d$) < AC 1 cm ($2.94mg/m^2{\cdot}d$) < CC 3 cm ($3.42mg/m^2{\cdot}d$) < uncapped ($4.59mg/m^2{\cdot}d$). The release rate of T-P was in the following increasing order: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($0.03mg/m^2{\cdot}d$) < AC 1 cm capped ($0.07mg/m^2{\cdot}d$) < uncapped ($0.24mg/m^2{\cdot}d$). The release of nitrogen and phosphorus were effectively blocked by AC capping of 3 cm thickness, and CC capping of 3 cm thickness effectively controlled the release of phosphorus. The order of increasing COD release rate was as follows: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($5.03mg/m^2{\cdot}d$) < AC 1 cm ($7.28mg/m^2{\cdot}d$) < uncapped ($10.05mg/m^2{\cdot}d$), indicating that AC and CC capping effectively interrupted the release of organic contaminants from the sediments. It was concluded that AC and CC could effectively block the release of T-N, T-P and COD release from contaminated reservoir sediments.

Biological Dechlorination of Chlorinated Ethylenes by Using Bioelectrochemical System (생물전기화학시스템을 이용한 염화에틸렌의 생물학적 탈염소화)

  • Yu, Jaecheul;Park, Younghyun;Seon, Jiyun;Hong, Seongsuk;Cho, Sunja;Lee, Taeho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.304-311
    • /
    • 2012
  • Chlorinated ethylenes such as perchloroethylene (PCE) and trichloroethylene (TCE) are widely used as industrial solvents and degreasing agents. Because of improper handling, these highly toxic chlorinated ethylenes have been often detected from contaminated soils and groundwater. Biological PCE dechlorination activities were tested in bacterial cultures inoculated with 10 different environmental samples from sediments, sludges, soils, and groundwater. Of these, the sediment using culture (SE 2) was selected and used for establishing an efficient PCE dechlorinating enrichment culture since it showed the highest activity of dechlorination. The cathode chamber of bioelectrochemical system (BES) was inoculated with the enrichment culture and the system with a cathode polarized at -500 mV (Vs Ag/AgCl) was operated under fed-batch mode. PCE was dechlorinated to ethylene via TCE, cis-dichloroethylene, and vinyl chloride. Microbial community analysis with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) showed that the microbial community in the enrichment culture was significantly changed during the bio-electrochemical PCE dechlorination in the BES. The communities of suspended-growth bacteria and attached-growth bacteria on the cathode surface are also quite different from each other, indicating that there were some differences in their mechanisms receiving electrons from electrode for PCE dechlorination. Further detailed research to investigate electron transfer mechanism would make the bioelctrochemical dechlorination technique greatly useful for bioremediation of soil and groundwater contaminated with chlorinated ethylenes.

Estimation of the Removal Capacity for Cadmium and Calculation of Minimum Reaction Time of BOF Slag (제강슬래그의 카드뮴 제거능 평가 및 필요반응시간 결정)

  • Lee, Gwang-Hun;Kim, Eun-Hyup;Park, Jun-Boum;Oh, Myoung-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.5-12
    • /
    • 2011
  • This study was focused on the reactivity of furnace slag against cadmium to design the vertical drain method with reactive column for improving contaminated sea shore sediment. The kinetic sorption test was performed by changing the initial concentration and pH. Using pseudo-second-order model, the reactivity of furnace slag was quantitatively analyzed. Equilibrium removal amount ($q_e$) of furnace slag increased and rate constant ($k_2$) decreased with the increase of initial cadmium concentration. With the increase of pH, the equilibrium removal amount ($q_e$) and rate constant ($k_2$) increased in the same initial concentration. Required retention time was related to the inverse of the product of the equilibrium removal amount ($q_e$) multiplied by rate constant ($k_2$). The required retention time could be used to design the length of reactive column.

Removal of RDX using Lab-scale Plug Flow Constructed Wetlands Planted with Miscanthus sacchariflorus (Maxim.) Benth (물억새를 식재한 플러그 흐름 습지에서의 RDX 제거동역학)

  • Lee, Ahreum;Kim, Bumjoon;Park, Jieun;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.85-94
    • /
    • 2015
  • RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) is the most important explosive contaminant, both in concentration and in frequency, at military shooting ranges in which green technologies such as phytoremediation or constructed wetlands are the best option for mitigation of explosive compounds discharge to the environment. A study was conducted with two identical lab-scale plug flow constructed wetlands planted with Amur silver grass to treat water artificially contaminated with 40 mg/L of toxic explosive compound, RDX. The reactor was inoculated with or without RDX degrading mixed culture to evaluate plant-microorganism interactions in RDX removal, transformation products distribution, and kinetic constants. RDX and its metabolites in water, plant, and sediment were analyzed by HPLC to determine mass balance and kinetic constants. After 30 days of operation, the reactor reached steady-state at which more than 99% of RDX was removed with or without the mixed culture inoculation. The major transformation product was TNX (Trinitroso-RDX) that comprised approximately 50% in the mass balance of both reactors. It was also the major compound in the plant root and shoot system. Acute toxicity analysis of the water samples showed more than 30% of toxicity reduction in the effluent than that of influent containing 40 mg/L of RDX. In the Amur silver grass mesocosm seeded with the mixed culture, the specific RDX removal rate, that is 1st order removal rate normalized to plant fresh weight, was estimated to be 0.84 kg−1 day−1 which is 16.7% higher than that in the planted only mesocosm. Therefore, the results of this study proved that Amur silver grass is an effective plant for RDX removal in constructed wetlands and the efficiency can be increased even more when applied with RDX degrading microbial consortia.

Distributions of Organic Matter and Trace Metals in Surface Sediments around a Manila Clam Ruditapes phillippinarum Farming Area in Gomso Bay, Korea (곰소만 바지락(Ruditapes phillippinarum) 양식장 주변 퇴적물 내 유기물과 미량금속 분포특성)

  • Choi, Minkyu;Lee, In-Seok;Kim, Chung-Sook;Kim, Hyung-Chul;Hwang, Dong-Woon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.555-563
    • /
    • 2015
  • Organic matter and trace metals were investigated in surface sediments of Gomso Bay, where there is dense Manila clam Ruditapes philippinarum farming activity, to evaluate contamination of sediments in intertidal shellfish farming area. We measured mean grain size (Mz), chemical oxygen demand (COD), ignition loss (IL), acid volatile sulfide (AVS), total organic carbon (TOC), and total nitrogen (TN), and trace metals (As, Cd, Cr, Cu, Fe, Hg, Mn, Pb and Zn) in intertidal and sublittoral sediments. The intertidal sediments were mainly composed of coarser sediments (sand, silty sand, and sandy silt), with Mz values ranging from 2.61 to 4.79 Ø. Mz and the content of organic matter in sediments were lower in the intertidal zone than in the sublittoral zone. The mean metal concentrations in surface sediments decreased in the order Fe > Mn > Zn > Cr > Pb > Cu > As > Cd > Hg. The metal concentrations in surface sediments showed a significant positive correlation with Mz and organic matter content, indicating that metal concentrations in the surface sediments of Gomso Bay are controlled by Mz and organic matter. The concentrations of organic matter and trace metals in the study region were lower than or similar to those in other intertidal zones in western coast and much lower than those reported in other shellfish farming areas in Korea. Our results suggest that intertidal Manila clam farming sediments from Gomso Bay are not contaminated by organic matter and trace metals.

A Study on the Development of Low Speed Twin-Hull Form for Seabed Organic Sediment Collection (해저 유기퇴적물 수거를 위한 저속 쌍동형 선형개발 연구)

  • Park, Je-woong;Kim, Do-jung;Oh, Woo-jun;Jeong, Uh-cheul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.246-252
    • /
    • 2016
  • In this study, conceptual design of the fore-body hull form of catamaran type dredging vessel was performed that can effectively remove the contaminated sediments in coastal seabed. The hull form was simpled for the easy hull construction and the resistance performance was investigated to find out the effect of hull form parameters between variation of waterline and angle of entrance, etc. The relation between resistance performance and characteristics of free surface flows according to variation of bow forms was investigated by model testing in the circulating water channel and using Ansys CFX. The improvement of ship resistance performance to the wave resistance decrease due to improved wave pattern has been verified according to move the stem and the volume of the shoulder to the fore part of the vessel.

The Concentrations of Heavy Metals in Sediment Seawater and Oyster (Crassostrea gigas) in Coastal Region of Industrial Complex in Korea (한국 임해 공단 연안에서 퇴적물 해수 및 굴 (Crassostrea gigas)의 중금속 함량)

  • Lee, I.S.;B.j. Rho;J.I. Song;E.J. Kim
    • The Korean Journal of Ecology
    • /
    • v.19 no.3
    • /
    • pp.261-270
    • /
    • 1996
  • To investigate the degree of contamination from Korean coastal region, the concentrations of Cu, Pb, Zn and Cd in sediments, seawater and oyster (Crassostrea gigas) at Masan Bay, Onsan Bay, Daesan industrial complex and their control areas were analysed. Values for sediments, seawater and oyster in the industrial complex coastal region were higher than those in the control area except for seawater in Daesan. The values for dissolved phasc of Cu, Pb, Zn and Cd in seawater showed 0.3~1.75 ${\mu}g/l$, 0.013~0.12 ${\mu}g/l$, 0.20~6.14 ${\mu}g/l$ and 0.007~0.021 ${\mu}g/l$, respectively. The concentrations of Cu, Pb, Zn and Cd in sediments werd 12.0~47.8 ${\mu}g/g$, 6.16~59.5 ${\mu}g/g$, 43.0~230 ${\mu}g/g$ and 0.52~11.2 ${\mu}g/g$, respectively. The concentrations of Cu, Pb, Zn and Cd in oyster showed 12.1~85.6 ${\mu}g/g$, 0.267~1.48 ${\mu}g/g$, 1, 070~3, 250 ${\mu}g/g$ and 3.23~7.71 ${\mu}g/g$, respectively. The contents of heavy metals in oysters at industrial complex coastal region showed that they were not seriously contaminated compared with those of Mussel Watch (1992).

  • PDF

Assessment of Environmental Pollution for Streams of Andong City in Gyeongbuk Province Using Invertebrate Biomarker and Chemical Residual Analysis (무척추동물 생체지표와 화학잔류량 분석을 통한 경북 안동지역내 하천들의 환경오염 평가)

  • Ryoo Keon-Sang;Choi Jong-Ha;Kim Young-Gyun;Cho Sung-Hwan;Lee Hwa-Sung
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.583-596
    • /
    • 2005
  • Samples of water, soil, and sediment were taken from 10 streams of Andong city in Gyeongbuk province in October 2004. To assess the degree of environmental pollution for each stream site, the chemical analyses of pollutants such as T-N, T-P, COD, heavy metal, organophosphorous and organochlorine pesticides, and dioxin-like PCB congeners were implemented using the standard process tests or the U. S. EPA methods. In addition, biological assessment using insect immune biomarkers was conducted on the same environmental samples to complement the chemical assessment. Except Waya stream (T-N; 2.91 mg/L, T-P; 0.16 mg/L, COD; 14.0 mg/L) with above the environmental quality standards, the T-P and COD concentrations of 9 sites are relatively low. The contents of Pb and Cd in samples taken from each stream were much lower than environmental quality standards. However, in comparison with soil samples of other streams, several times higher concentrations of Pb and Cd were found in locations at Mi, Gilan, Yeonha, and Waya stream sites. Dementon-S-methyl, diazinon, parathion, and phenthoate compounds among organophosphorous pesticides were detected as concentrations of ppb levels, respectively, from soil samples collected in the vicinity of Gilan, Mi, Norim, and Waya stream. On the other hand, 16 organochlorine pesticides and 12 dioxin-like PCB congeners selected in this study were not found in all samples. In particular, considering significant disrupting effects of Waya stream's samples on insect immune capacity, this stream seems to be contaminated with investigated and/or univestigated pollutants in this study.