• 제목/요약/키워드: Contaminated Groundwater

검색결과 977건 처리시간 0.025초

Remediation Groundwater contaminated with Nitrate and Phosphate using Micellar-enhanced ultrafiltration

  • 백기태;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.334-337
    • /
    • 2002
  • The drinking water industry faces a growing number of difficultiesin the treatment of groundwater for drinking water production. Groundwater sources are frequently contaminated with nitrates and phosphates due to usage of chemical fertilizer In this study, feasibility of micellar enhanced ultrafiltation (MEUF) was investigated to remediate groundwater contaminated with nitrate and phosphate. Ultrafiltration membrane was cellulose acetate with molecular weight cut off (MWCO) 10,000 and celtyl pyridinium chloride (CPC) was used to form pollutant-micelle complex with nitrate and phosphate. The results show that nitrate and phosphate rejections are satisfactory. The removal efficiency of nitrate and phosphate show 80% and 84% in single pollutant system, respectively with 3 molar ratio of CPC to pollutants. In the multi-pollutant systems, the removalefficiency increased to 90 % and 89 % for nitrate and phosphate, respectively, The presence of nitrate in the solutions did not affect the removal of phosphate and that of phosphate did not affect the removal of nitrate. The concentration of CPC in the permeate and removal efficiency of CPC was a function of the concentration of CPC in the feed solutions.

  • PDF

다성분 반응 이동 모델링을 이용한 트리클로로에틸렌(TCE)으로 오염된 지하수에서의 자연저감 평가 (Assessment of Natural Attenuation Processes in the Groundwater Contaminated with Trichloroethylene (TCE) Using Multi-Species Reactive Transport Modeling)

  • 진성욱;전성천;김락현;황현태
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.101-113
    • /
    • 2016
  • To properly manage and remediate groundwater contaminated with chlorinated hydrocarbons such as trichloroethylene (TCE), it is necessary to assess natural attenuation processes of contaminants in the aquifer along with investigation of contamination history and aquifer characterization. This study evaluated natural attenuation processes of TCE at an industrial site in Korea by delineating hydrogeochemical characteristics along the flow path of contaminated groundwater, by calculating reaction rate constants for TCE and its degradation products, and by using geochemical and reactive transport modeling. The monitoring data showed that TCE tended to be transformed to cis-1,2-dichloroethene (cis-1,2-DCE) and further to vinyl chloride (VC) via microbial reductive dechlorination, although the degree was not too significant. According to our modeling results, the temporal and spatial distribution of the TCE plume suggested the dominant role of biodegradation in attenuation processes. This study can provide a useful method for assessing natural attenuation processes in the aquifer contaminated with chlorinated hydrocarbons and can be applied to other sites with similar hydrological, microbiological, and geochemical settings.

유류오염 토양-지하수 복원기술: 문제와 개선방향

  • 이석영;윤준기;이채영;김길홍;신언빈;조정숙
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.3-10
    • /
    • 2003
  • Soil and groundwater contamination by petroleum hydrocarbon products is only one of many environmental problems in Korea. However, many environmental consulting companies have been targeted their business on this subject because the petroleum-oil-lubricant (POL) products have been widely used product and accidental releases of the products from storages resulted numerous small and large contaminated sites throughout Korea. Therefore, many small and large companies are actively participating in environmental assessment and remediation projects for the POL contaminated sites. Remedial technologies for the POL contaminated sites have been developed for many years by government and private institutions throughout the world. Development of a new decontamination technology for the POL contaminated sites is no longer attractive issue in research community because scientific bases of most cost-effective remedial technologies are well understood and have been used in the field by commercial sector. Numerous sites contaminated by underground tanks at gas stations have been remediated by relatively small companies in this country. We should appreciate their noticeable contributions as a frontier under very difficult market environment in Korea. We heard many successful stories as well as a few failure stories. Soil-groundwater remediation of POL contaminated site is not a simple task as shown in the text books or protocols. Therefore, failure risk is always with us, which requires continuous efforts for improvement of the technologies by the users and developers. In this presentation, author will discuss technical problems encountered and improvement made during implementation of several remedial technologies applied by Samsung Environmental Team. This is not a presentation about research or case study. We want to share our thought and experience with environmental engineers actively engaged in soil and groundwater remediation projects in Korea.

  • PDF

유류오염토양 중 다환방향족탄화수소류(PAHs) 분석방법 연구 - US EPA 16종 PAHs를 중심으로 (Analytical Method of Polycyclic Aromatic Hydrocarbons (PAHs) in Petroleum Contaminated Soils - Focused on the 16 US EPA Priority PAHs)

  • 김지영;김동호;김태승;한진석;이재영;노회정
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제17권5호
    • /
    • pp.20-30
    • /
    • 2012
  • In case of analyzing PAHs (EPA 16 compounds) in oil-contaminated soils, the lump of peaks may occur because of the aliphatic and polar compounds in oil. This phenomenon is due to the lower accuracy of the analysis. To solve this problem, evaluation of application of silicagel-alumina multi-layer fraction was performed using standard substances and oil-contaminated soils. As a result of application of silicagel-alumina multi-layer fraction cleanup method using standard substances, recovery rates of surrogate standards (5 compounds including Naphthalene-d8) were 83~100% and those of target standards were 75~129%. These were to meet the target values (60~130%) in this study. When used 4% water-silicagel column analyze PAHs in oil-contaminated soils, Some problems were generated for quantitative analysis of PAHs; concentration of PAHs was underestimated due to an upward baseline of internal standard (recovery rate: less than 60%) and overestimated by the lump of peaks which were not purified (the biggest recovery rate: more than 400%). On the other hand, in case of silicagel-alumina multi-layer fraction cleanup method, recovery rate of surrogate standards were 61~101.6%. Therefore this cleanup method was considered a valid method to improve accuracy of analysis of PAHs in oil-contaminated soils.

투수성 반응벽에 의한 오염지하수 복원효과 분석 (Clean-up of Contaminated Groundwater by Permeable Reactive Barrier)

  • 정하익;김상근
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.542-547
    • /
    • 2000
  • It has become interested in the concept of permeable barriers for the containment and/or destruction of contaminated groundwater. The purpose of these trench-like barriers is to provide in situ capture and possibly destruction of the contaminant while preserving groundwater flow to uncontaminated zones. For instance, a trichloreethylene(TCE) plume may be contained by a permeable in which reactive iron reduces TCE to ethylene and ethane, compounds which can be easily biodegraded. The objective of this research is to examine the feasibility of using zero-valent iron as a clean-up media in permeable reactive barrier system. A series of laboratory column tests are performed. The concentration of influent and effluent water and the rate of clean up are analysed from these test results. The experimental result shows that the majority of the contamination in groundwater is removed in the reactor. And it shows the corresponding increase in the concentration of chloride ions through the reactor. Results from this study indicate that permeable reactive barrier containing admixtures of zero-valent iron and other materials can effectively clean up groundwater contaminated with organic compounds.

  • PDF

Remediation Groundwater contaminated with chromate using Micellar - enhanced ultrafiltration(MEUF)

  • 양지원;백기태;김보경
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.306-309
    • /
    • 2002
  • Micellar-enhanced ultrafiltration was investigated to remediate groundwater contaminated with chromate using a cationic surfactant, cetylpyridinium chloride (CPC). Removal of chromate was expressed as a function of molar ratio of CPC to chromate. With 10 molar ratio of CPC, removal efficiency of chromate was reached to over 99%. The rejection of CPC was 90% at 1 molar ratio, gradually increased as the molar ratio increased.

  • PDF

소수성 유기오염물질로 오염된 지하수의 Biobarrier에 의한 복원 (Remediation of groundwater contaminated with hydrophobic organic compounds using biobarrier)

  • 김영규;신원식;김영훈;송동의
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.114-117
    • /
    • 2002
  • Sorption and desorption studies were conducted to evaluate several media as a potential biobarrier for the remediation of groundwater contaminated with hydrophobic organic compounds (HOCs). Pahokee and Bion peats, Devonian Ohio shale, vermicompost, and 50% HDTMA-montmorillonite were used as model sorbents. Sorption and desorption isotherms were determined using the radiolabeled phenanthrene (Phe). Sorption capacity of Phe on several sorbents was in the order Ohio shale > 50% HDTMA-montmorillonite > vermicompost > Pahokee peat. Mineralization kinetics was investigated for Phe-sorbed sorbents using Pseudomonas putida 17484. Among the tested sorbents, active biodegradation of Phe was observed in shale and vermicompost: degradation in shale exhibited little lag time while that in shale showed a significant lag time. Results of this study indicate that sorbents used in this work can be utilized as permeable reactive biobarrier media for the remediation of HOC-contaminated groundwater.

  • PDF

경기도 시흥군 소래면 뱀내하천 유역의 지하수 오염에 관한 연구 (A study of the pollution of ground water in the basin of the river Baem Nae Chun, Sorae-Myun, Shihoong-gon, Kyonggi-Do, Korea)

  • 김윤종;정봉일
    • 물과 미래
    • /
    • 제6권2호
    • /
    • pp.19-29
    • /
    • 1973
  • The progressive contamination of water resulted from man's activity and the use of fertilizers is not restricted only to surface water, but also the shallow groundwater is affected. This type of groundwater contamination is mainly restricted to areas composed of permeable, nonconsolidated sediments forming a shallow aquifer. The chloride and the sulfate resulted from man's activity and the use of fertilizers were measured to study the variations of the groundwater contamination. In general, (1) When water level rises, the rate of groundwater contamination becomes less and when water level declines, the rate of contamination is increased. (2) The highly contaminated season is the early-summer and the less contaminated season is the winter or after rainy season. (3) The groundwater in weathering zone without covering layer. (4) The degree of contamination of wells is increased with the increase of well depth and lowing the water table, because of increasing contaminated water from enlargement of the area of influence of the well.

  • PDF

대표적 4개 오염지역의 수리지질 특성과 미생물학적 연구

  • 고경석;김재곤;조경숙;이상돈;염병우
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.164-167
    • /
    • 2004
  • To investigate the chemical and microbiological characteristics of groundwater and surface waters in contaminated sites, hydrochemical and microbial community analysis were executed. Different indigenous bacteria were observed at 4 contaminated sites and this is considered to decompose the contaminants of groundwater. The research results showed the close relationship between hydrochemistry and microbial characteristics and those are used for the information of natural attenuation and enhanced bioremediation.

  • PDF

유류오염지역의 지하수 수질특성과 토양가스 분석을 통한 바이오파일의 효율평가 (The Characteristics of Shallow Groundwater in Petroleum Contaminated Site and the Assessment of Efficiency of Biopile by Off-gas Analysis)

  • 조장환;성기준
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권2호
    • /
    • pp.36-44
    • /
    • 2013
  • The objectives of this study were to identify the characteristics of shallow groundwater from the oil-contaminated site for a long period and to evaluate the applicability of biopile technology to treat the soil excavated from it. The eight monitoring wells were installed in the contaminated site and pH, Electrical Conductivity (EC), Dissolved Oxygen (DO), Oxidation Reduction Potential (ORP), Temperature and the concentrations of major ions and pollutants were measured. The VOCs in soil gas were monitored during biopile operation and TPH concentration was analyzed at the termination of the experiment. The pH was 6.62 considered subacid and EC was 886.19 ${\mu}S/cm$. DO was measured to be 2.06 mg/L showing the similar characteristic of deep groundwater. ORP was 119.02 mV indicating oxidation state. The temperature of groundwater was measured to be $16.97^{\circ}C$. The piper diagram showed that groundwater was classified as Ca-$HCO_3$ type considered deep groundwater. The ground water concentration for TPH, Benzene, Toluene, Xylene of the first round was slightly higher than that of the second round. The concentration of carbon dioxide of soil gas was increased to 1.3% and the concentration of VOCs was completely eliminated after the 40 days. The TPH concentration showed 98% remediation efficiency after the 90 days biopile operation.