• Title/Summary/Keyword: Containment system

Search Result 386, Processing Time 0.025 seconds

A Shaking Table Test for Equipment Isolation in the NPP (II): FPS (원전기기의 면진을 위한 진동대 실험 II : FPS)

  • Kim, Min-Kyu;ZChoun, Young-Sun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.79-89
    • /
    • 2004
  • This paper presents the results of experimental studies on the equipment isolation effect in the nuclear containment. For this purpose, shaking table tests were performed. The purpose of this study is enhancement of seismic safety of equipment in the Nuclear Power Plant. The isolation system, known as Friction Pendulum System (FPS), combines the concepts of sliding bearings and pendulum motion was selected. Peak ground acceleration, bidirectional motion, effect of vertical motion and frequency contents of selected earthquake motions were considered. As a result, these are founded that the vertical motion of seismic wave affect to the base isolation and the isolation effect decreased in case of near fault earthquake motion.

A Macroscopic Framework for Internet Worm Containments (인터넷 웜 확산 억제를 위한 거시적 관점의 프레임워크)

  • Kim, Chol-Min;Kang, Suk-In;Lee, Seong-Uck;Hong, Man-Pyo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.9
    • /
    • pp.675-684
    • /
    • 2009
  • Internet worm can cause a traffic problem through DDoS(Distributed Denial of Services) or other kind of attacks. In those manners, it can compromise the internet infrastructure. In addition to this, it can intrude to important server and expose personal information to attacker. However, current detection and response mechanisms to worm have many vulnerabilities, because they only use local characteristic of worm or can treat known worms. In this paper, we propose a new framework to detect unknown worms. It uses macroscopic characteristic of worm to detect unknown worm early. In proposed idea, we define the macroscopic behavior of worm, propose a worm detection method to detect worm flow directly in IP packet networks, and show the performance of our system with simulations. In IP based method, we implement the proposed system and measure the time overhead to execute our system. The measurement shows our system is not too heavy to normal host users.

Hospital Management Strategy in Digital Era (터지털 시대의 병원경영전략 수립에 관한 연구 - 병원경영자의 경영개선활동에 관한 인식을 중심으로 -)

  • Seo, Young-Joon
    • Korea Journal of Hospital Management
    • /
    • v.6 no.2
    • /
    • pp.173-201
    • /
    • 2001
  • This study purports to examine the current management and information technology related strategy of Korean hospitals and suggest the effective management strategy in the 21st century when is digital era. Specifically the study tries to analyze the changing trends of strategic orientation and investigate the general management and information technology strategy of Korean hospitals. Self-administered Questionnaires were distributed to 721 hospitals nationwide and finally 98 Questionnaires were analyzed for the study. The results of the study are as follows : 1) Half of the respondent hospitals reported that they have an analyzer orientation in 2000, whereas 19.4% were prospectors, reactors 16.4%, and defenders 14.3%. However, the respondent hospitals intended to have a prospector orientation in the future (2002), while 29.6% planned on being analyzers, 17.3% reactors, and 3.1% defenders. 2) Hospital services for improving patient satisfaction were the most common. strategy for the respondent hospitals, followed by cost containment, organizational restructuring, employee education, purchasing system change, specialization of clinical services, quality improvement of medical care, strengthening the networking with the stakeholders, public relations and marketing strategy, diversification, and installing the information system. However, the strategies of annual salary system, retrenchment of unprofitable services, merit payment based on performance were still not popular for the respondent hospitals. 3) As for the strategies related with information technology, most hospitals have not implemented actively, except for the establishment of home-pages, order communication systems, and insurance claims through electronic data interchange system. 4) There were significant differences in the level of strategy implementation in terms of the ownership, bed size, financial performance, and the top managers I knowledge of information technology. The larger bed size, the higher financial performance, the better knowledge of information technology the top managers have, the more strategies the respondent hospitals implemented. The managerial and political implications for Korean hospitals in digital era were also discussed.

  • PDF

Evaluation of Cryogenic Compressive Strength of Divinycell of NO 96-type LNG Insulation System (NO96타입 LNG 방열시스템 Divinycell의 극저온 압축 강도 평가)

  • Choe, Yeong-Rak;Kim, Jeong-Hyeon;Kim, Jong-Min;Park, Sungkyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.349-355
    • /
    • 2016
  • Divinycell, which functions as both insulation and a supporting structure, is generally applied in the NO96-type liquefied natural gas (LNG) insulation system. Polymer-material-based Divinycell, which has a high strength and low weight, has been widely used in the offshore, transportation, wind power generation, and civil engineering fields. In particular, this type of material receives attention as an insulation material because its thermal conductivity can be lowered depending on the ambient temperature. However, it is difficult to obtain research results for Divinycell, even though the component materials of the NO96-type LNG cargo containment system, such as 36% nickel steel (invar steel), plywood, perlite, and glass wool, have been extensively studied and reported. In the present study, temperature and strain-rate dependent compressive tests on Divinycell were performed. Both the quantitative experimental data and elastic recovery are discussed. Finally, the mechanical characteristics of Divinycell were compared to the results of polyurethane foam insulation material.

Numerical Analysis of Nuclear-Power Plant Subjected to an Aircraft Impact using Parallel Processor (병렬프로세서를 이용한 원전 격납건물의 항공기 충돌해석)

  • Song, Yoo-Seob;Shin, Sang-Shup;Jung, Dong-Ho;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.715-722
    • /
    • 2011
  • In this paper, the behavior of nuclear-power plant subjected to an aircraft impact is performed using the parallel analysis. In the erstwhile study of an aircraft impact to the nuclear-power plant, it has been used that the impact load is applied at the local area by using the impact load-time history function of Riera, and the target structures have been restricted to the simple RC(Reinforced Concrete) walls or RC buildings. However, in this paper, the analysis of an aircraft impact is performed by using a real aircraft model similar to the Boeing 767 and a fictitious nuclear-power plant similar to the real structure, and an aircraft model is verified by comparing the generated history of the aircraft crash against the rigid target with another history by using the Riera's function which is allowable in the impact evaluation guide, NEI07-13(2009). Also, in general, it is required too much time for the hypervelocity impact analysis due to the contact problems between two or more adjacent physical bodies and the high nonlinearity causing dynamic large deformation, so there is a limitation with a single CPU alone to deal with these problems effectively. Therefore, in this paper, Message-Passing MIMD type of parallel analysis is performed by using self-constructed Linux-Cluster system to improve the computational efficiency, and in order to evaluate the parallel performance, the four cases of analysis, i.e. plain concrete, reinforced concrete, reinforced concrete with bonded containment liner plate, steel-plate concrete structure, are performed and discussed.

Analysis of EQ pH Condition and Fission Product Removal Capability for Nuclear Power Plant (원전의 내환경기기검증 화학환경 및 핵분열생성물 제거능력 평가)

  • Song, Dong Soo;Ha, Sang Jun;Seong, Je Joong;Jeon, Hwang Yong;Huh, Seong Cheol
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.186-190
    • /
    • 2014
  • Nuclear Power Plants require the control ability of chemical condition (pH) because pH control during transient accident such as LOCA makes an able the fission product removal capability to be maintained, stress corrosion cracking of stainless steel equipment to be prevented and the production of hydrogen by aluminum and zinc to be minimized. An NPP is designed to control the pH of containment spray and sump coolant using the spray additives 30% NaOH in the event of loss of coolant accident. In this paper, the pH of sump coolant of an NPP during LOCA was analyzed and the fission products removal constant and decontamination factor were calculated according to Standard Review Plan 6.5.2 related to spray chemical conditions of pH. The calculated pH value of recirculation mode using the computer code corresponds to 8.09~9.67, which meets the chemical environment regulation requirements. The fission product removal capability caused by containment spray system is performed to provide input to radiation analysis.

Improvement of Insulation System for LNG Storage Tank Base Slab (LNG 저장탱크 바닥판 단열 시스템 개선)

  • Lee, Yong-Jin;Lho, Byeong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.141-147
    • /
    • 2010
  • Liquefied natural gas(LNG) is natural gas that has been converted temporarily to liquid form for ease of storage and transport it. Natural gas is the worlds cleanest burning fossil fuel and it has emerged as the environmentally preferred fuel of choice. In Korea, the demand of this has been increased since the first import from the Indonesia in 1986. LNG takes up about 1/600th the volume of natural gas in the gaseous state by cooling it to approximately $-162^{\circ}C(-260^{\circ}F)$. The reduction in volume therefore makes it much more cost efficient to transport and store it. Modern LNG storage tanks are typically the full containment type, which is a double-wall construction with reinforced concrete outer wall and a high-nickel steel inner tank, with extremely efficient insulation between the walls. The insulation will be installed to LNG outer tank for the isolation of cryogenic temperature. The insulation will be installed in the base slab, wall and at the roof. According to the insulation's arrangement, the different aspects of temperature transmission is shown around the outer tank. As the result of the thermal & stress analysis, by the installing cellular glass underneath the perlite concrete, the temperature difference is greatly reduced between the ambient temperature and inside of concrete wall, also reducing section force according to temperature load.

An Analysis of Determinants of Medical Cost Inflation using both Deterministic and Stochastic Models (의료비 상승 요인 분석)

  • Kim, Han-Joong;Chun, Ki-Hong
    • Journal of Preventive Medicine and Public Health
    • /
    • v.22 no.4 s.28
    • /
    • pp.542-554
    • /
    • 1989
  • The skyrocketing inflation of medical costs has become a major health problem among most developed countries. Korea, which recently covered the entire population with National Health Insurance, is facing the same problem. The proportion of health expenditure to GNP has increased from 3% to 4.8% during the last decade. This was remarkable, if we consider the rapid economic growth during that time. A few policy analysts began to raise cost containment as an agenda, after recognizing the importance of medical cost inflation. In order to Prepare an appropriate alternative for the agenda, it is necessary to find out reasons for the cost inflation. Then, we should focus on the reasons which are controllable, and those whose control are socially desirable. This study is designed to articulate the theory of medical cost inflation through literature reviews, to find out reasons for cost inflation, by analyzing aggregated data with a deterministic model. Finally to identify determinants of changes in both medical demand and service intensity which are major reasons for cost inflation. The reasons for cost inflation are classified into cost push inflation and demand pull inflation, The former consists of increases in price and intensity of services, while the latter is made of consumer derived demand and supplier induced demand. We used a time series (1983-1987), and cross sectional (over regions) data of health insurance. The deterministic model reveals, that an increase in service intensity is a major cause of inflation in the case of inpatient care, while, more utilization, is a primary attribute in the case of physician visits. Multiple regression analysis shows that an increase in hospital beds is a leading explanatory variable for the increase in hospital care. It also reveals, that an introduction of a deductible clause, an increase in hospital beds and degree of urbanization, are statistically significant variables explaining physician visits. The results are consistent with the existing theory, The magnitude of service intensity is influenced by the level of co-payment, the proportion of old age and an increase in co-payment. In short, an increase in co-payment reduced the utilization, but it induced more intensities or services. We can conclude that the strict fee regulation or increase in the level of co-payment can not be an effective measure for cost containment under the fee for service system. Because the provider can react against the regulation by inducing more services.

  • PDF

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part I: Model test

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3068-3084
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to experimentally assess the damage and vibrations of NPP buildings subjected to aircraft crash. In present Part I, two shots of reduce-scaled model test of aircraft impacting on NPP building were carried out. Firstly, the 1:15 aircraft model (weighs 135 kg) and RC NPP model (weighs about 70 t) are designed and prepared. Then, based on the large rocket sled loading test platform, the aircraft models were accelerated to impact perpendicularly on the two sides of NPP model, i.e., containment and auxiliary buildings, with a velocity of about 170 m/s. The strain-time histories of rebars within the impact area and acceleration-time histories of each floor of NPP model are derived from the pre-arranged twenty-one strain gauges and twenty tri-axial accelerometers, and the whole impact processes were recorded by three high-speed cameras. The local penetration and perforation failure modes occurred respectively in the collision scenarios of containment and auxiliary buildings, and some suggestions for the NPP design are given. The maximum acceleration in the 1:15 scaled tests is 1785.73 g, and thus the corresponding maximum resultant acceleration in a prototype impact might be about 119 g, which poses a potential threat to the nuclear equipment. Furthermore, it was found that the nonlinear decrease of vibrations along the height was well reflected by the variations of both the maximum resultant vibrations and Cumulative Absolute Velocity (CAV). The present experimental work on the damage and dynamic responses of NPP structure under aircraft impact is firstly presented, which could provide a benchmark basis for further safety assessments of prototype NPP structure as well as inner systems and components against aircraft crash.

Development of MK $III^{TM}$ Type Large Arctic LNG Carrier

  • Suh, Yong-Suk;Jang, Ki-Bok;Ito, Hisashi;Park, Seung-Mun;Chung, Sung-Wook;Han, Sung-Yong
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.3
    • /
    • pp.24-38
    • /
    • 2007
  • It is a very challenging work to design large Arctic LNG carrier, since LNG carrier requires high reliability for the structural safety and the environment of Arctic region is known to be very severe. Therefore, special attention should be paid for the verifying the structural safety of LNG career particularly with regard to LNG leakage. In this paper, the safety of the hull structure and cargo containment system of 208K MK $III^{TM}$ type LNG carriers with Arc4 is investigated based on the direct calculation of ice loads as well as wave loads. From the whole investigation, it is clear that the developed vessel - 208K MK $III^{TM}$ type LNG carrier with RMRS Ice class Arc4 - has enough strength and is safe to be operated in Arctic region.