• Title/Summary/Keyword: Containment liner plate

Search Result 11, Processing Time 0.019 seconds

Development of Inspection Technique for Filling or Unfilling of Containment Liner Plate Backside Concrete in Nuclear Power Plant (원전 격납건물 라이너플레이트 배면 콘크리트 채움 여부 점검 기술 개발)

  • Lee, Jeong Seok;Kim, Wang Bae;Kwak, Dong Ryul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.37-41
    • /
    • 2020
  • The Nuclear containment building is a main safety-related structure that performs shielding and conservation functions to prevent highly radioactive materials from leakage to the outside environment in the case of various environmental conditions and postulated accidents. The containment building contains a reactor, steam generator, pressurizer, tank, reactor coolant system, auxiliary system and engineering safety system, and is designed so that highly radioactive materials above the limits specified in 10 CFR 100 do not escape to the outside environment in the case of LOCA(Loss of Coolant Accident) for instance. The containment metal liner plate(CLP) is a carbon steel plate with a nominal plate thickness of 6 mm, which functions as a mold for the wall and dome of the containment building when concrete is filled, fulfills airtightness to prevent leakage of seriously radioactive materials. In recent years, backside corrosion was found on the liner plate in some domestic nuclear power plants. The main cause of backside corrosion was unfilled concrete. In this paper, an inspection technique of assessing filling suitability for CLP backside concrete is developed. Results show that the validity of inspection technique for CLP backside concrete using vibration sensor is successfully verified.

Design and Test of ElectroMagnetic Acoustic Transducer applicable to Wall-Thinning Inspection of Containment Liner Plates (격납건물 라이너 플레이트 감육 검사를 위한 전자기 초음파 트랜스듀서의 설계 및 성능 평가)

  • Han, Soon Woo;Cho, Seung Hyun;Kang, To;Moon, Seong In
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.46-52
    • /
    • 2019
  • This work proposes a noncontact ultrasonic transducer for detecting wall-thinning of containment liner plates of nuclear power plants by measuring their thickness without physical contact. Because the containment liner plate is designed to prevent atmospheric leakage of radioactive substances under severe nuclear accident, its wall-thinning inspection is important for safety of nuclear power plants. Wall-thinning investigation of containment liner plates have been carried out by measuring their thickness with contact-type ultrasonic thickness gauge by inspectors and needs a lot of time and cost. As an alternative, an electromagnetic acoustic transducer measuring precisely thickness of containment liner plates without any physical contact or couplant was suggested in this research. A transducer generating and measuring shear ultrasonic waves in thickness direction was designed and wave field produced by the transducer was analyzed to verify the design. The working performance of the suggested transducer was tested with carbon steel plate specimens with various thicknesses. The test result shows that the proposed transducer can measure thickness of the specimens precisely without any couplant and implies that swift scanning of wall-thinning of containment liner plates will be possible with the proposed transducer.

Study of concrete de-bonding assessment technique for containment liner plates in nuclear power plants using ultrasonic guided wave approach

  • Lee, Yonghee;Yun, Hyunmin;Cho, Younho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1221-1229
    • /
    • 2022
  • In this work, the guided wave de-bonding area-detecting technique was studied for application to containment liner plates in nuclear power plant areas. To apply this technique, an appropriate Lamb wave mode, symmetric and longitudinal dominance, was verified by the frequency shifting technique. The S0 2.7 MHz mm Lamb wave mode was chosen to realize quantitative experimental results and their visualization. Results of the bulk wave, longitudinal wave mode, and comparison experiments indicate that the wave mode was able to distinguish between the de-bonded and bonded areas. Similar to the bulk wave cases, the bonded region could be distinguished from the de-bonded region using the Lamb wave approach. The Lamb wave technique results showed significant correlation to the de-bonding area. As the de-bonding area increased, the Lamb wave energy attenuation effect decreased, which was a prominent factor in the realization of quantitative tomographic visualization. The feasibility of tomographic visualization was studied via the application of Lamb waves. The reconstruction algorithm for the probabilistic inspection of damage (RAPID) technique was applied to the containment liner plate to verify and visualize the de-bonding condition. The results obtained using the tomography image indicated that the Lamb wave-based RAPID algorithm was capable of delineating debonding areas.

Buckling of Power-Plant Containment Liner Plate Structure during Lifting (원전 격납철판 구조물의 양중시 좌굴 특성)

  • Yang, Seong-Yeong;Lee, Jong-Sup;Lee, Sang-Bong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.336-339
    • /
    • 2011
  • 본 논문에서는 유한요소 프로그램 (ANSYS)을 이용하여 돔격납철판 (dome containment liner plate)의 양중시 좌굴특성의 연구를 수행하였다. 원전 격납철판의 양중시, 양중 와이어(wire)의 구조적인 배치특성상 격납철판에 압축력이 유발되고, 이러한 압축력은 격납철판의 좌굴을 일으킬 수 있다. 다양한 양중인자 (lifting factors)를 고려한 격납철판 유한요소모델을 수립하고, 이러한 양중인자들의 좌굴특성에 미치는 영향을 고찰하였다. 양중 와이어의 체결위치의 높이가 낮을 수록 좌굴강도가 증가하며, 라이너 플레이트 두께에 비례하여 좌굴강도가 증가하였다.

  • PDF

기술현황분석 - 원전 격납건물 Containment Liner Plate 공법

  • Park, Ji-Hong;Kim, U-Seong
    • 기계와재료
    • /
    • v.22 no.1
    • /
    • pp.76-83
    • /
    • 2010
  • 원자력발전소의 구조건전성 및 안전성을 확보하는데 있어서 격납건물의 중요한 목적은 방사성물질의 유출을 방지하는 최후의 보루 역할을 한다는 것이다. 또한 원전의 격납건물 선설에 있어서 고려해야 될 가장 중요한 인자는 안전성과 경제성이다. 이러한 목표를 달성하기 위해, 최근 국내에서 첨단 CLP(Containment Liner Plate) 공법이 개발되어 신월성 원전 2호기에 적용되었다. 이 공법은 기존의 CLP 2단 모듈화 공법에서 한 단계 발전한 CLP 3단 모듈화 공법으로 건설기간 단축, 비용 절감 및 구조건전성을 확보하는 계기가 되었다. 그리고 이러한 공법을 바탕으로 국내건설 뿐만 아니라 원전 수출에 커다란 기여를 하게 되었다. 이 글에서는 국내 원자력발전소 CLP 설치에 있어서, 기존의 방법과 새로운 공법에 대한 비교/분석, 공정, 장/단점 등을 연구, 조사해 보았다.

  • PDF

Elastic Wave Propagation in Nuclear Power Plant Containment Building Walls Considering Liner Plate and Concrete Cavity (라이너 플레이트 및 콘크리트 공동을 고려한 원전 격납건물 벽체의 탄성파 전파 해석)

  • Kim, Eunyoung;Kim, Boyoung;Kang, Jun Won;Lee, Hongpyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.167-174
    • /
    • 2021
  • Recent investigation into the integrity of nuclear containment buildings has highlighted the importance of developing an elaborate diagnostic method to evaluate the distribution and size of cavities inside concrete walls. As part of developing such a method, this paper presents a finite element approach to modeling elastic waves propagating in the containment building walls of a nuclear power plant. We introduce a perfectly matched layer (PML) wave-absorbing boundary to limit the large-scale nuclear containment wall to the region of interest. The formulation results in a semi-discrete form with symmetric damping and stiffness matrices. The transient elastic wave equations for a mixed unsplit-field PML were solved for displacement and stresses in the time domain. Numerical results show that the sensitivity of displacement, velocity, acceleration, and stresses is large depending on the size and location of the cavity. The dynamic response of the wall slightly differs depending on the existence of the containment liner plate. The results of this study can be applied to a full-waveform inversion approach for characterizing cavities inside a containment wall.

Analysis of Containment Building Subjected to a Large Aircraft Impact using a Hydrocode (Hydrocode를 이용한 격납구조의 대형 민항기 충돌해석)

  • Shin, Sang Shup;Park, Taehyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5A
    • /
    • pp.369-378
    • /
    • 2011
  • In this paper, the response analysis of RC(Reinforced Concrete), SC(Steel-Plate Concrete) containment buildings subjected to a large aircraft impact is performed using Autodyn-3D as Hydrocode. Until now, the impact load in the analysis of aircraft impacts has been applied to target structures at the local area by using the impact load-time history function of Riera. However in this paper, the results of aircraft crash are analyzed by using an aircraft model similar to Boeing 767 and verified by comparing the generated history of the aircraft crash against the rigid target with another history by using the Riera's function. To estimate the resistivity of the impact, the response and safety of SC containment buildings, this study is performed by comparing the four cases of plane concrete, reinforced concrete, bonded containment liner plate at reinforced concrete, and SC structure. Thus, the different behaviors between SC and RC structures when they are subjected to the extreme impact load could be anticipated. Consequently, the improved safety is expected by replacing RC structure with SC structure for nuclear power plants.

ANALYSIS OF PRESTRESSED CONCRETE CONTAINMENT VESSEL (PCCV) UNDER SEVERE ACCIDENT LOADING

  • Noh, Sang-Hoon;Moon, Il-Hwan;Lee, Jong-Bo;Kim, Jong-Hak
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.77-86
    • /
    • 2008
  • This paper describes the nonlinear analyses of a 1:4 scale model of a prestressed concrete containment vessel (PCCV) using an axisymmetric model and a three-dimensional model. These two models are refined by comparison of the analysis results and with testing results. This paper is especially focused on the analysis of behavior under pressure and the temperature effects revealed using an axisymmetric model. The temperature-dependent degradation properties of concrete and steel are considered. Both geometric and material nonlinearities, including thermal effects, are also addressed in the analyses. The Menetrey and Willam (1995) concrete constitutive model with non-associated flow potential is adopted for this study. This study includes the results of the predicted thermal and mechanical behaviors of the PCCV subject to high temperature loading and internal pressure at the same time. To find the effect of high temperature accident conditions on the ultimate capacity of the liner plate, reinforcement, prestressing tendon and concrete, two kinds of analyses are performed: one for pressure only and the other for pressure with temperature. The results from the test on pressurization, analysis for pressure only, and analyses considering pressure with temperatures are compared with one another. The analysis results show that the temperature directly affects the behavior of the liner plate, but has little impact on the ultimate pressure capacity of the PCCV.

Numerical Analysis of Nuclear-Power Plant Subjected to an Aircraft Impact using Parallel Processor (병렬프로세서를 이용한 원전 격납건물의 항공기 충돌해석)

  • Song, Yoo-Seob;Shin, Sang-Shup;Jung, Dong-Ho;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.715-722
    • /
    • 2011
  • In this paper, the behavior of nuclear-power plant subjected to an aircraft impact is performed using the parallel analysis. In the erstwhile study of an aircraft impact to the nuclear-power plant, it has been used that the impact load is applied at the local area by using the impact load-time history function of Riera, and the target structures have been restricted to the simple RC(Reinforced Concrete) walls or RC buildings. However, in this paper, the analysis of an aircraft impact is performed by using a real aircraft model similar to the Boeing 767 and a fictitious nuclear-power plant similar to the real structure, and an aircraft model is verified by comparing the generated history of the aircraft crash against the rigid target with another history by using the Riera's function which is allowable in the impact evaluation guide, NEI07-13(2009). Also, in general, it is required too much time for the hypervelocity impact analysis due to the contact problems between two or more adjacent physical bodies and the high nonlinearity causing dynamic large deformation, so there is a limitation with a single CPU alone to deal with these problems effectively. Therefore, in this paper, Message-Passing MIMD type of parallel analysis is performed by using self-constructed Linux-Cluster system to improve the computational efficiency, and in order to evaluate the parallel performance, the four cases of analysis, i.e. plain concrete, reinforced concrete, reinforced concrete with bonded containment liner plate, steel-plate concrete structure, are performed and discussed.

A Study on Physicochemical Properties of Epoxy Coatings for Liner Plate in Nuclear Power Plant (원자력발전소 격납건물 철재면 에폭시 도장시편의 물리화학적 특성 평가)

  • Lee, Jae-Rock;Seo, Min-Kang;Lee, Sang-Kook;Lee, Chul-Woo;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.809-814
    • /
    • 2005
  • In this work, the thermal properties of epoxy coating system on the liner plate in the containment structure of nuclear power plants had been examined by irradiation and design basis accident (DBA) conditions. The effect of immersion in hot water on adhesion strength of the coating system had been also studied. The glass transition temperature ($T_g$) and thermal stability of ET-5290/carbon steel A 32 epoxy coating systems were measured by DSC and TGA analyses, respectively. Contact angle measurements were used to determine the effect of immersion on the surface energetics of epoxy coating system, with a viewpoint of surface free energy. Adhesion tests were also executed to evaluate the adhesion strength at interfaces between carbon steel plate and epoxy resins. As a result, it was found that the irradiation led to an improvement of internal crosslinked structure in cured epoxy systems, resulting in significantly increasing the thermal stability, as well as the $T_g$. Also, the immersion in hot water made a role in the post-curing of epoxy resins and increased the mechanical interlocking of the network system, resulting in increasing the adhesion strength of the epoxy coating system.