• Title/Summary/Keyword: Containment Phenomenological Event Tree

Search Result 3, Processing Time 0.018 seconds

Window-Based Computer Code Package CONPAS for an Integrated Level 2 PSA

  • Ahn, Kwang-Il;Kim, See-Darl;Song, Yong-Mann;Jin, Young-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.493-498
    • /
    • 1996
  • A PC window-based computer code, CONPAS(CONtainment Performance Analysis System), has been developed to integrate the numerical, graphical and results-operation aspects of Level 2 probabilistic safety assessments (PSA) for nuclear power plants automatically. As a main logic for accident progression analysis, it employs a concept of the small containment phenomenological event tree(CPET) helpful to trace out visually individual accident progressions and of the large supporting event tree(LSET) for its detailed quantification. Compared with other existing computer codes for Level 2 PSA, the CONPAS code provides several advanced features: computational aspects including systematic uncertainty analysis, importance analysis, and sensitivity analysis, reporting aspects including tabling and graphic, and user-friend interface.

  • PDF

Development of a Computer Code, CONPAS, for an Integrated Level 2 PSA

  • Ahn, Kwang-Il;Kim, See-Darl;Song, Yong-Mann;Jin, Young-Ho;Park, Chung K.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.58-74
    • /
    • 1998
  • A PC window-based computer code, CONPAS (CONtainment Performance Analysis System), has been developed to integrate the numerical, graphical, and results-operation aspects of Level 2 probabilistic safety assessments (PSA) for nuclear power plants automatically. As a main logic for accident progression analysis, it employs a concept of the small containment phenomenological event tree (CPET) helpful to trace out visually individual accident progressions and of the detailed supporting event tree (DSET) for its detailed quantification. For the integrated analysis of Level 2 PSA, the code utilizes five distinct, but closely related modules. Its computational feasibility to real PSAs has been assessed through an application to the UCN 3&4 full scope Level 2 PSA. Compared with other existing computer codes for Level 2 PSA, the CONPAS code provides several advanced features: (1) systematic uncertainty analysis / importance analysis / sensitivity analysis, (2) table / graphical display & print, (3) employment of the recent Level 2 PSA technologies, and (4) highly effective user interface. The main purpose of this paper is to introduce the key features of CONPAS code and results of its feasibility study.

  • PDF

Development of a Fully-Coupled, All States, All Hazards Level 2 PSA at Leibstadt Nuclear Power Plant

  • Zvoncek, Pavol;Nusbaumer, Olivier;Torri, Alfred
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.426-433
    • /
    • 2017
  • This paper describes the development process, the innovative techniques used and insights gained from the latest integrated, full scope, multistate Level 2 PSA analysis conducted at the Leibstadt Nuclear Power Plant (KKL), Switzerland. KKL is a modern single-unit General Electric Boiling Water Reactor (BWR/6) with Mark III Containment, and a power output of $3600MW_{th}/1200MW_e$, the highest among the five operating reactors in Switzerland. A Level 2 Probabilistic Safety Assessment (PSA) analyses accident phenomena in nuclear power plants, identifies ways in which radioactive releases from plants can occur and estimates release pathways, magnitude and frequency. This paper attempts to give an overview of the advanced modeling techniques that have been developed and implemented for the recent KKL Level 2 PSA update, with the aim of systematizing the analysis and modeling processes, as well as complying with the relatively prescriptive Swiss requirements for PSA. The analysis provides significant insights into the absolute and relative importances of risk contributors and accident prevention and mitigation measures. Thanks to several newly developed techniques and an integrated approach, the KKL Level 2 PSA report exhibits a high degree of reviewability and maintainability, and transparently highlights the most important risk contributors to Large Early Release Frequency (LERF) with respect to initiating events, components, operator actions or seismic component failure probabilities (fragilities).