• Title/Summary/Keyword: Container cranes

Search Result 175, Processing Time 0.022 seconds

Robust Controller Design of Container Cranes for Improving the Stevedoring Efficiency in Port (항만효율향상을 위한 컨테이너 크레인의 강인한 제어기 설계)

  • Lee, Young-Jae;Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.531-536
    • /
    • 2007
  • In this paper we present an interpolation-LQ control technique which tunes continuously the controller gain by interpolating the gains of sub-LQ controllers. The proposed controller design technique is applied to the container crane system for simulations. Several cases of simulations are carried out in order to prove the control effectiveness and robustness. The simulation results of the proposed controller are compared with those of LQ controllers. The results showed better control performance than those of LQ controllers.

A Study on the Tracking Control of a Transfer Crane with Tire Slip (슬립을 고려한 트랜스퍼 크레인의 주행제어에 관한 연구)

  • Jeong, Ji-Hyun;Lee, Dong-Seok;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1212-1219
    • /
    • 2010
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the technical trends and environment of the automated container terminal, it is necessary that the systems for cargo handling are equipped with more intelligent control technologies. To cope with this tendency, from the middle of the 1990's, the automated RMGC (Rail-Mounted Gantry Crane) and RTGC (Rubber-Tired Gantry Crane) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. If we want to obtain more efficient handling performance, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control problems must be considered in the control system design and application process. Considering these problems, in this paper, the system modelling with the tire slip and a tracking control approach are proposed. Especially, we design the tracking control system based on the 2DOF servosystem design approach to cope with undesirable disturbance input. The experiment results show the desirable performance and usefulness of the designed control system.

Operation of Container Cranes Using ℓ1-Optimal Control (1-최적제어를 이용한 컨테이너 크레인의 운전)

  • Kim Young-Han;Chang Sang-Mok
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.409-413
    • /
    • 2005
  • The existing control techniques for the operation of a container crane satisfy the terminal condition of controlled variables, but the outcome of input computation is inadequate for the operation of the crane due to heavy movement of inputs. In this study, a new control technique employing a nonlinear model of the crane is proposed to compute the inputs approximated with the 4th-order Chevyshev function. The control objective of sum of absolute deviations is minimized, and the optimization is conducted with the simplex algorithm. The inputs and outputs computed from the proposed technique were compared with the results of the previous study to show that they give more stable crane operation than the existing control technique.

The Development Strategies of the Port of Busan in the Midst of Rapidly Growing Chinese Economy (중국 경제의 급부상에 따른 부산항의 발전전략)

  • 배병태
    • Journal of Korea Port Economic Association
    • /
    • v.18 no.2
    • /
    • pp.109-133
    • /
    • 2002
  • The China entered World Trade Oganization(WTO) last year, thus opening its border to more - and freer - trade. With its foreign trade rapidly expanding and with economic growth continuing at a substantial -rate, China will be the largest container traffic generating country in the world. In the light of this potential trade bonanza, regional ports in North-East Asia strive to gain a competitive-edge. The Port of Busan, the world's third largest container port, wants to capture a significant share of the china's container cargoes. In this circumstance, development strategies of the Port of Busan are suggested as follows. First, to cope with increasing volumes, the New Busan Port on Gaduk island should be constructed without failure. Second, it is necessary to add modernized high-performance gantry cranes and to train crane operators' skill. Third, it needs to apply Dwell Time- Sliding Scale System for transshipment cargoes. Fourth, it needs to develop the EDI network in terminal areas or adjacent hub ports to exchange trustworthy and satisfactory informations Fifth, port authority -needs to enlarge designated Free Trade Zone to facilitate the free flow of cargoes. Sixth, the restoration of rail links between North and South Korea is abundantly clear. Thus it needs to enlarge railroad facilities in advance. Seventh, it needs to establish the Port Authority of Busan immediately. Finally, it needs to strengthen port sales and to open events like 'Marine Week 2001' regularly to attract potential canters or big shippers.

  • PDF

Development of a Remote Operation System for a Quay Crane Simulator (안벽크레인 시뮬레이터 원격운전 시스템 개발)

  • Kang, Seongho;Lee, Sanggin;Choo, Young-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.385-390
    • /
    • 2015
  • Quay cranes are considered core equipment for container terminal operation. However, unmanned operation systems have not as yet been announced due to the technological difficulties of implementation. In this paper, we developed a wireless controller to control a quay crane simulator remotely and conducted its performance test, a first step toward unmanned operation of quay cranes. The communication delay of a developed wireless controller was about 9.4ms on average while that of existing wired controllers was about 5.6ms. The same functions were implemented and tested on a smart phone where the average communication delay was 7.3ms. In addition, to apply the developed system into a real environment, we proposed a network architecture based on IEEE 802.11ac and carried out its performance evaluation. When the distance between two nodes was 50m apart, the throughputs of the TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) were 57Mbps and 189Mbps, respectively. The communication delay of the control data was 9.1ms through the TCP channel. These results reveal the proper working of remote quay crane operation if we adopt the IEEE 802.11ac network.

A Study on Dynamic Modeling and Vibration Analysis of Gantry Robot (겐트리 로봇의 동적 모델링 및 진동해석)

  • Cho, Chang-Je;park, Dong-Jun;Yang, Jun-Seok;koo, Young-mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.211-216
    • /
    • 2014
  • In general, gantry robot is very useful handling of heavy objects. But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. These approaches require sway angle. But it is very difficult to know sway angle and its derivative. Therefore control algorithm of trolley speed is not practical in general. On the contrary, control strategy using auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-side container cranes. In this paper, we derive equations of motion of trolley system which have anti-sway controller to use auxiliary rope. And we propose the control strategy and analyse the behavior of the proposed system.

Efficient Yard Tractor Control Method for the Dual Cycling in Container Terminal (효율적인 듀얼 사이클을 위한 야드 트랙터 통제 방법)

  • Chung, Chang-Yun;Shin, Jae-Young
    • Journal of Navigation and Port Research
    • /
    • v.36 no.1
    • /
    • pp.69-74
    • /
    • 2012
  • Recent global supply chain, improving the efficiency of container shipping process is very important. In the overseas shipping of goods, the voyage of super containership is common to overcome amount of increasing cargo. Thus, container terminal managers make an experiment on the double cycle and dual cycle operation, which ship loading and unloading were carried out simultaneously, for maximizing the productivity of quay side. Yard Tractors(YTs) pooling methods also are introduced for increasing the efficiency of assignment of YTs. In this paper, we analyzed the efficiency of dual cycling through comparing existing pooling methods with the modified method for the dual cycling. We developed a simulation model using simulation analysis software, Arena. The result of experiment shown that the more dual cycling don't always increase the gross crane rate(GCR), which means productivity of quay cranes(QCs) per hour.

Automated Stacking Crane Dispatching Strategy in a Container Terminal using Genetic Algorithm (유전 알고리즘을 이용한 자동화 컨테이너 터미널에서의 장치장 크레인의 작업 할당 전략)

  • Wu, Jiemin;Yang, Young-Jee;Choe, Ri;Ryu, Kwang-Ryel
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.387-394
    • /
    • 2012
  • In an automated container terminal, automated stacking cranes(ASCs) take charge of handling of containers in a block of the stacking yard. This paper proposes a multi-criteria strategy to solve the problem of job dispatching of twin ASCs which are identical to each another in size and specification. To consider terminal situation from different angles, the proposed method evaluates candidate jobs through various factors and it dispatches the best score job to a crane by doing a weighted sum of the evaluated values. In this paper, we derive the criteria for job dispatching strategy, and we propose a genetic algorithm to optimize weights for aggregating evaluated results. Experimental results are shown that it is suitable for real time terminal with lower computational cost and the strategy using various criteria improves the efficiency of the container terminal.

Hydrodynamic interactions and coupled dynamics between a container ship and multiple mobile harbors

  • Kang, H.Y.;Kim, M.H.
    • Ocean Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.217-228
    • /
    • 2012
  • As the size of container ships continues to increase, not many existing harbors can host the super-container ship due to its increased draft and the corresponding dredging requires huge budget. In addition, the minimization of waiting and loading/offloading time is the most important factor in harbor competitiveness. In this regard, mobile-harbor concept has been developed in Korea to achieve much improved harbor capacity and efficiency. In developing the concept, one of the most important elements is the operability of crane between two or more floating bodies in side-by-side arrangement. The container ship is to be stationed through a hawser connection to an outside-harbor fixed-pile station with the depth allowing its large draft. The mobile harbors with smart cranes are berthed to the sides of its hull for loading/offloading containers and transportation. For successful operation, the relative motions between the two or more floating bodies with hawser/fender connections have to be within allowable range. Therefore, the reliable prediction of the relative motions of the multiple floating bodies with realistic mooring system is essential to find the best hull particulars, hawser/mooring/fender arrangement, and crane/docking-station design. Time-domain multi-hull-mooring coupled dynamic analysis program is used to assess the hydrodynamic interactions among the multiple floating bodies and the global performance of the system. Both collinear and non-collinear wind-wave-current environments are applied to the system. It is found that the non-collinear case can equally be functional in dynamics view compared to the collinear case but undesirable phenomena associated with vessel responses and hawser tensions can also happen at certain conditions, so more care needs to be taken.

Optimization of YT Dispatching Policy for Maximizing Quay Side Productivity in Container Terminals (컨테이너 터미널의 해측 생산성 극대화를 위한 YT 배차 전략 최적화)

  • Kim, Taekwang;Ryu, Kwang Ryel
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.227-234
    • /
    • 2020
  • One of the most important operational goals in container terminals is to maximize the quay side productivity by minimizing the turnaround times of the vessels, for which the operations of the quay cranes (QC) to load/unload containers onto/from the vessels should be conducted efficiently without delays. This paper suggests using a policy-based dispatching method for YTs (Yard Tractor) that deliver containers between QCs and the storage yard. The goal of using such a dispatching policy is to maximize the efficiency of the YT operation and accordingly to minimize the QC delays because of late arrivals of the YTs. In particular, in this paper, we modified the previously proposed policy for its application to real container terminal and verified the effect through simulation experiments using real terminal data.