• Title/Summary/Keyword: Contactless Palmprint Recognition

Search Result 2, Processing Time 0.02 seconds

Contactless Palmprint Recognition Based on the KLT Feature Points (KLT 특징점에 기반한 비접촉 장문인식)

  • Kim, Min-Ki
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.11
    • /
    • pp.495-502
    • /
    • 2014
  • An effective solution to the variation on scale and rotation is required to recognize contactless palmprint. In this study, we firstly minimize the variation by extracting a region of interest(ROI) according to the size and orientation of hand and normalizing the ROI. This paper proposes a contactless palmprint recognition method based on KLT(Kanade-Lukas-Tomasi) feature points. To detect corresponding feature points, texture in local regions around KLT feature points are compared. Then, we recognize palmprint by measuring the similarity among displacement vectors which represent the size and direction of displacement of each pair of corresponding feature points. An experimental results using CASIA public database show that the proposed method is effective in contactless palmprint recognition. Especially, we can get the performance of exceeding 99% correct identification rate using multiple Gabor filters.

Video Palmprint Recognition System Based on Modified Double-line-single-point Assisted Placement

  • Wu, Tengfei;Leng, Lu
    • Journal of Multimedia Information System
    • /
    • v.8 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • Palmprint has become a popular biometric modality; however, palmprint recognition has not been conducted in video media. Video palmprint recognition (VPR) has some advantages that are absent in image palmprint recognition. In VPR, the registration and recognition can be automatically implemented without users' manual manipulation. A good-quality image can be selected from the video frames or generated from the fusion of multiple video frames. VPR in contactless mode overcomes several problems caused by contact mode; however, contactless mode, especially mobile mode, encounters with several revere challenges. Double-line-single-point (DLSP) assisted placement technique can overcome the challenges as well as effectively reduce the localization error and computation complexity. This paper modifies DLSP technique to reduce the invalid area in the frames. In addition, the valid frames, in which users place their hands correctly, are selected according to finger gap judgement, and then some key frames, which have good quality, are selected from the valid frames as the gallery samples that are matched with the query samples for authentication decision. The VPR algorithm is conducted on the system designed and developed on mobile device.