• Title/Summary/Keyword: Contact problem

Search Result 984, Processing Time 0.023 seconds

On the Slipping Phenomenon in Adhesive Complete Contact Problem (응착 완전 접촉 문제에서 접촉면 미끄럼 현상에 관한 고찰)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.147-152
    • /
    • 2020
  • This paper is within the framework of an adhered complete contact problem wherein the contact between a half plane and sharp edged indenter, both of which are elastic in character, is constituted. The eigensolutions of the contact shear and normal stresses, σrq and σq, respectively, are evaluated via asymptotic analysis. The ratio of σrqqq is investigated and compared with the coefficient of friction, μ, of the contact surface to observe the propensity to slip on the contact surface. Interestingly, there exists a region of |σθθ| ≥ |μ|. Thus, slipping can occur, although the problem is solved under the condition of an adhered contact without slipping. Given that a tribological failure potentially occurs at the slipping region, it is important to determine the size of the slipping region. This aspect is also factored in the paper. A simple example of the adhered contact between two elastically dissimilar squares is considered. Finite element analysis is used to evaluate generalized stress intensity factors. Furthermore, it is repeatedly observed that slipping occurs on the contact surface although the size of it is extremely small compared with that of the contacting squares. Therefore, as a contribution to the field of contact mechanics, this problem must be further explained logically.

Continuous and discontinuous contact problem of a magneto-electro-elastic layer

  • Comez, Isa;Karabulut, Pembe Merve
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.67-77
    • /
    • 2022
  • In this study, frictionless continuous and discontinuous contact problems of a magneto-electro-elastic layer in the presence of the body force were discussed. The layer was indented by a rigid cylindrical insulating punch and supported by a rigid substrate without bond. Applying the Fourier integral transform technique, the general expressions of the problem were derived in the presence of body force. Thanks to the boundary conditions, the singular integral equations were obtained for both the continuous and the discontinuous contact cases. Gauss-Chebyshev integration formulas were used to transform the singular integral equations into a set of nonlinear equations. Contact width under the punch, initial separation distance, critical load, separation regions and contact stress under the punch and between the layer, and substrate were given as a result.

A Study on the Elastic-Plastic Contact Problem for Large Deformation (대변형 탄소성 접촉문제에 관한 연구)

  • Jeon, Byung-Hee;Kim, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1658-1667
    • /
    • 1993
  • In this research, a numerical algorithm has been developed, which can be applied to the large deformation and large displacement contact problems between two deformable bodies. The contact conditions expressed in terms of the rate of angle change have been proposed considering the change in geometric shape and rate of contact force. A set of linear simultaneous equations is constructed by adding the geometric shape change and contact conditions to the original stiffness matrix. A new method to determine time increment has been proposed based on Euler method, in which the condition to prevent the contact bodies from penetrating and overrunning each other has been taken into consideration. Practical application to contact problem is extrusion in which bodies are sliding along the contact boundary.

Application of artificial neural networks to a double receding contact problem with a rigid stamp

  • Cakiroglu, Erdogan;Comez, Isa;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • v.21 no.2
    • /
    • pp.205-220
    • /
    • 2005
  • This paper presents the possibilities of adapting artificial neural networks (ANNs) to predict the dimensionless parameters related to the maximum contact pressures of an elasticity problem. The plane symmetric double receding contact problem for a rigid stamp and two elastic strips having different elastic constants and heights is considered. The external load is applied to the upper elastic strip by means of a rigid stamp and the lower elastic strip is bonded to a rigid support. The problem is solved under the assumptions that the contact between two elastic strips also between the rigid stamp and the upper elastic strip are frictionless, the effect of gravity force is neglected and only compressive normal tractions can be transmitted through the interfaces. A three layered ANN with backpropagation (BP) algorithm is utilized for prediction of the dimensionless parameters related to the maximum contact pressures. Training and testing patterns are formed by using the theory of elasticity with integral transformation technique. ANN predictions and theoretical solutions are compared and seen that ANN predictions are quite close to the theoretical solutions. It is demonstrated that ANNs is a suitable numerical tool and if properly used, can reduce time consumed.

Stress Singularity Behaviour in the Frictional Complete Contact Problem of Three Bodies (세 물체 간 마찰 완전 접촉 문제의 응력 특이성 거동)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.35 no.4
    • /
    • pp.229-236
    • /
    • 2019
  • This study investigates the stress singularity that occurs at the contact edge of three bodies in a frictional complete contact. We use the asymptotic analysis method, wherein we constitute an eigenvalue problem and observe the eigenvalue behavior, which we use to obtain the order of the stress singularity. For the present geometry of three bodies in contact, a contact between a cracked indenter and half plane is considered. This is a typical geometry of the PCMI problem of a nuclear fuel rod. Thus, this paper, specifically presents the characteristics of the PCMI problem from the perspective of stress singularity. Consequently, it is noted that the behavior of the stress singularity varies with the difference in the crack angle, coefficient of friction, and material dissimilarity, as is observed in a frictional complete contact of two bodies. In addition, we find that the stress singularity changes essentially linearly with respect to the coefficient of friction, regardless of the variation in the crack angle and material dissimilarity. Concurrently, we find the order of singularity to be 0.5 at a certain coefficient of friction, irrespective of the crack angle, which we also observe in the crack problem of a homogeneous and isotropic body. The order of singularity can also exceed 0.5 in the frictional complete contact problem of three bodies. This implies that the propensity for failure when three bodies are in frictional complete contact can be even worse than that in case of a failure induced by a crack.

Analysis of slender structural elements under unilateral contact constraints

  • Silveira, Ricardo Azoubel Da Mota;Goncalves, Paulo Batista
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.35-50
    • /
    • 2001
  • A numerical methodology is presented in this paper for the geometrically non-linear analysis of slender uni-dimensional structural elements under unilateral contact constraints. The finite element method together with an updated Lagrangian formulation is used to study the structural system. The unilateral constraints are imposed by tensionless supports or foundations. At each load step, in order to obtain the contact regions, the equilibrium equations are linearized and the contact problem is treated directly as a minimisation problem with inequality constraints, resulting in a linear complementarity problem (LCP). After the resulting LCP is solved by Lemke's pivoting algorithm, the contact regions are identified and the Newton-Raphson method is used together with path following methods to obtain the new contact forces and equilibrium configurations. The proposed methodology is illustrated by two examples and the results are compared with numerical and experimental results found in literature.

A Study on the Formulation of the Interaction Problem between Upper Structure and the Ground under Consolidation (上部 構造와 下部 壓密地盤 間 상호작용 문제의 정식화에 대한 연구)

  • Lee, Oe-Duck
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.1 s.31
    • /
    • pp.51-61
    • /
    • 1999
  • When a structure is built on the ground under consolidation, the instant corresponding contact pressure which the upper structure exerts on the ground is established. But, as the consolidation of the ground proceeds, the contact pressure is changed because of the flexural rigidity of the upper structure. This varied contact pressure exerts influence on the consolidation behavior of the ground. And, this varied consolidation behavior exerts on the contact pressure in retum. This kind of interaction between the upper struture and the olwer ground under consolidation contimues till all the consolidation process in finished. So this problem cannot be defined as a linear problem. In this paper an approximation method which can analyse this non-linear interaction problem is proposed by the FEM.

  • PDF

A frictionless contact problem for two elastic layers supported by a Winkler foundation

  • Birinci, Ahmet;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.331-344
    • /
    • 2003
  • The plane contact problem for two infinite elastic layers whose elastic constants and heights are different is considered. The layers lying on a Winkler foundation are acted upon by symmetrical distributed loads whose lengths are 2a applied to the upper layer and uniform vertical body forces due to the effect of gravity in the layers. It is assumed that the contact between two elastic layers is frictionless and that only compressive normal tractions can be transmitted through the interface. The contact along the interface will be continuous if the value of the load factor, ${\lambda}$, is less than a critical value. However, interface separation takes place if it exceeds this critical value. First, the problem of continuous contact is solved and the value of the critical load factor, ${\lambda}_{cr}$, is determined. Then, the discontinuous contact problem is formulated in terms of a singular integral equation. Numerical solutions for contact stress distribution, the size of the separation areas, critical load factor and separation distance, and vertical displacement in the separation zone are given for various dimensionless quantities and distributed loads.

Artificial neural network calculations for a receding contact problem

  • Yaylaci, Ecren Uzun;Yaylaci, Murat;Olmez, Hasan;Birinci, Ahmet
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.551-563
    • /
    • 2020
  • This paper investigates the artificial neural network (ANN) to predict the dimensionless parameters for the maximum contact pressures and contact areas of a contact problem. Firstly, the problem is formulated and solved theoretically by using Theory of Elasticity and Integral Transform Technique. Secondly, the contact problem has been extended based on the ANN. The multilayer perceptron (MLP) with three-layer was used to calculate the contact distances. External load, distance between the two quarter planes, layer heights and material properties were created by giving examples of different values were used at the training and test stages of ANN. Program code was rewritten in C++. Different types of network structures were used in the training process. The accuracy of the trained neural networks for the case was tested using 173 new data which were generated via theoretical solutions so as to determine the best network model. As a result, minimum deviation value (difference between theoretical and C++ ANN results) of was obtained for the network model. Theoretical results were compared with artificial neural network results and well agreements between them were achieved.

Frictionless contact problem for a layer on an elastic half plane loaded by means of two dissimilar rigid punches

  • Ozsahin, Talat Sukru
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.383-403
    • /
    • 2007
  • The contact problem for an elastic layer resting on an elastic half plane is considered according to the theory of elasticity with integral transformation technique. External loads P and Q are transmitted to the layer by means of two dissimilar rigid flat punches. Widths of punches are different and the thickness of the layer is h. All surfaces are frictionless and it is assumed that the layer is subjected to uniform vertical body force due to effect of gravity. The contact along the interface between elastic layer and half plane will be continuous, if the value of load factor, ${\lambda}$, is less than a critical value, ${\lambda}_{cr}$. However, if tensile tractions are not allowed on the interface, for ${\lambda}$ > ${\lambda}_{cr}$ the layer separates from the interface along a certain finite region. First the continuous contact problem is reduced to singular integral equations and solved numerically using appropriate Gauss-Chebyshev integration formulas. Initial separation loads, ${\lambda}_{cr}$, initial separation points, $x_{cr}$, are determined. Also the required distance between the punches to avoid any separation between the punches and the layer is studied and the limit distance between punches that ends interaction of punches, is investigated. Then discontinuous contact problem is formulated in terms of singular integral equations. The numerical results for initial and end points of the separation region, displacements of the region and the contact stress distribution along the interface between elastic layer and half plane is determined for various dimensionless quantities.