• Title/Summary/Keyword: Contact and Gap Resistance

Search Result 41, Processing Time 0.022 seconds

Cooling System Design in Power Electronic

  • Kim Chan-Ki;Rhew Hong-Woo;Kim Yoon-Ho;Holtz J.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.520-523
    • /
    • 2003
  • In this paper, heatsink design for high power converter is presented. There are many ways of designing heatsink, but air cooling is by far the most used and much more practical than any of the other methods. In this paper, the practical methods of cooling which include the method to reduce a noise and a vibration due to a fan and the method to design a gap resistance and a contact resistance due to mounting force between thyristor and heatsink is proposed. Finally, simulation and experimental results are described to verify validity of the proposed method.

  • PDF

Performance Impact Analysis of Resistance Elements in Field-Effect Transistors Utilizing 2D Channel Materials (2차원 채널 물질을 활용한 전계효과 트랜지스터의 저항 요소 분석)

  • TaeYeong Hong;Seul Ki Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.83-87
    • /
    • 2023
  • In the field of electronics and semiconductor technology, innovative semiconductor material research to replace Si is actively ongoing. However, while research on alternative materials is underway, there is a significant lack of studies regarding the relationship between 2D materials used as channels in transistors, especially parasitic resistance, and RF (radio frequency) applications. This study systematically analyzes the impact on electrical performance with a focus on various transistor structures to address this gap. The research results confirm that access resistance and contact resistance act as major factors contributing to the degradation of semiconductor device performance, particularly when highly scaled down. As the demand for high-frequency RF components continues to grow, establishing guidelines for optimizing component structures and elements to achieve desired RF performance is crucial. This study aims to contribute to this goal by providing structural guidelines that can aid in the design and development of next-generation RF transistors using 2D materials as channels.

A Cantilever Type Contact Force Sensor Array for Blood Pressure Measurement (혈압 측정을 위한 외팔보형 접촉힘 센서 어레이)

  • Lee, Byeung-Leul;Jung, Jin-Woo;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • Piezoresistive type contact force sensor array is fabricated by (111) Silicon bulk micromachining for continuous blood pressure monitoring. Length and width of the unit sensor structure is $200{\mu}m$ and $190{\mu}m$, respectively. The gap between sensing elements is only $10{\mu}m$. To achieve wafer level packaging, the sensor structure is capped by PDMS soft cap using wafer molding and bonding process with $10{\mu}m$ alignment precision. The resistance change over contact force was measured to verify the feasibility of the proposed sensor scheme. The maximum measurement range and resolution is 900 mm Hg and 0.57 mm Hg, respectively.

Influence of Metal-Coating Layer on an Electrical Resistivity of Thick-Film-Type Thermoelectric Modules Fabricated by a Screen Printing Process (스크린 프린팅 공정에 의해 제조된 열전후막모듈의 전기저항에 미치는 금속코팅층의 영향)

  • Kim, Kyung-Tae;Koo, Hye-Young;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.423-429
    • /
    • 2011
  • Thermoelectric-thick films were fabricated by using a screen printing process of n and p-type bismuth-telluride-based pastes. The screen-printed thick films have approximately 30 ${\mu}m$ in thickness and show rough surfaces yielding an empty gap between an electrode and the thick film. The gap might result in an increase of an electrical resistivity of the fabricated thick-film-type thermoelectric module. In this study, we suggest a conductive metal coating onto the surfaces of the screen-printed paste in order to reduce the contact resistance in the module. As a result, the electrical resistivity of the thermoelectric module having a gold coating layer was significantly reduced up to 30% compared to that of a module without any metal coating. This result indicates that an introduction of conductive metal layers is effective to decrease the contact resistivity of a thick-film-typed thermoelectric module processed by screen printing.

A Study on Attractive Force Characteristics of Glass Substrate Using Alumina Electrostatic Chuck by Finite Element Analysis (유한요소해석을 이용한 알루미나 정전척의 글라스 기판 흡착 특성 연구)

  • Lee, Jae Young;Jang, Kyung Min;Min, Dong Kyun;Kang, Jae Gyu;Sung, Gi Hyun;Kim, Hye Dong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.46-50
    • /
    • 2020
  • In this research, the attractive force of Coulomb type electrostatic chuck(ESC), which consisted of alumina dielectric, on glass substrate was studied by using the finite element analysis. The attractive force is caused by the high electrical resistance which occurs in contact region between glass substrate and dielectric layer. This research tries the simple geometrical modeling of ESC and glass substrate with air gap. The influences of the applied voltage, and air gap are investigated. When alumina dielectric with 1014 Ω·cm, 1.5 kV voltage, and 0.01 mm air gap were applied, electrostatic force in this work reached to 4 gf/㎠. This results show that the modeling of air gap is essential to derive the attractive force of the ESC.

A Simple Plane-Shaped Micro Stator Using Silicon Substrate Mold and Enamel Coil

  • Choi, Ju Chan;Choi, Young Chan;Jung, Dong Geun;Lee, Jae Yun;Min, Seong Ki;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.333-337
    • /
    • 2013
  • This study proposes a simply fabricated micro stator for higher output power than previously reported micro stators. The stator has been fabricated by inserting enamel coil in silicon mold formed by micro etching process. The most merits of the proposed micro stator are the simple fabrication process and high output power. Previously reported micro stators have high resistance because the micro coil is fabricated by relatively thin-film-based deposition process such as sputtering and electroplating. In addition, the previously reported micro coil has many electrical contact points for forming the coil structure. These characteristics of the micro stator can lead to low performance in output power. However, the proposed micro stator adopts commercially available enamel coil without any contact point. Therefore, the enamel coil of the proposed micro stator has low junction resistance due to the good electrical quality compared with the deposited or electroplated metal coil. Power generation tests were performed and the fabricated stator can produce 5.4 mW in 4000 RPM, $1{\Omega}$ and 0.3 mm gap. The proposed micro stator can produce larger output power than the previously reported stator spite of low RPM and the larger gap between the permanent magnet and the stator.

Ohmic Resistance of AlGaAs/GaAs HBT at High Temperature (고온 특성을 위한 AlGaAs/GaAs HBT의 설계에 관한 연구)

  • 이준영;신훈법;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.366-370
    • /
    • 2002
  • GaAs has become a very popular material for the fabrication of high frequency, low noise and microwave power devices. GaAs devices are also well suited for high temperature operation because of the large band gap of this material. The standard GaAs technology and device structures have to be modified for stable operation at high temperature. In this paper, AlGaAs/GaAs HBT considering stable ohmic contact at high temperature as well as thermal effect such as self-heating effect are introduced. All the data obtained study will be used as input data for the simulator and the result will be compared with an analytical model available in this study,

  • PDF

A Finite Element Modeling on the Fluid Flow and Solidification in a Continuous Casting Process (연속주조공정에서의 유동과 응고에 대한 유한요소 모델링)

  • Kim, Tae-Hun;Kim, Deok-Soo;Choi, Hyung-Chul;Kim, Woo-Seung;Lee, Se-Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.820-830
    • /
    • 1999
  • The coupled turbulent flow and solidification is considered in a typical slab continuous easting process using commercial program FIDAP. Standard $k-{\varepsilon}$ turbulence model is modified to decay turbulent viscosity in the mushy zone and laminar viscosity is set to a sufficiently large value at the solid region. This coupled turbulent flow and solidification model also contains thermal contact resistance due to the mold powder and air gap between the strand and mold using an effective thermal conductivity. From the computed flow pattern, the trajectory of inclusion particles was calculated. The comparison between the predicted and experimental solidified shell thickness shows a good agreement.

Flip Chip Process for RF Packages Using Joint Structures of Cu and Sn Bumps (Cu 범프와 Sn 범프의 접속구조를 이용한 RF 패키지용 플립칩 공정)

  • Choi, J.Y.;Kim, M.Y.;Lim, S.K.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.67-73
    • /
    • 2009
  • Compared to the chip-bonding process utilizing solder bumps, flip chip process using Cu pillar bumps can accomplish fine-pitch interconnection without compromising stand-off height. Cu pillar bump technology is one of the most promising chip-mounting process for RF packages where large gap between a chip and a substrate is required in order to suppress the parasitic capacitance. In this study, Cu pillar bumps and Sn bumps were electroplated on a chip and a substrate, respectively, and were flip-chip bonded together. Contact resistance and chip shear force of the Cu pillar bump joints were measured with variation of the electroplated Sn-bump height. With increasing the Sn-bump height from 5 ${\mu}m$ to 30 ${\mu}m$, the contact resistance was improved from 31.7 $m{\Omega}$ to 13.8 $m{\Omega}$ and the chip shear force increased from 3.8 N to 6.8 N. On the contrary, the aspect ratio of the Cu pillar bump joint decreased from 1.3 to 0.9. Based on the variation behaviors of the contact resistance, the chip shear force, and the aspect ratio, the optimum height of the electroplated Sn bump could be thought as 20 ${\mu}m$.

  • PDF

Effect of Growth Factors in Doping Concentration of MBE Grown GaAs for Tunnel Diode in Multijunction Solar Cell

  • Park, Gwang-Uk;Gang, Seok-Jin;Gwon, Ji-Hye;Kim, Jun-Beom;Yeo, Chan-Il;Lee, Yong-Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.308-309
    • /
    • 2012
  • One of the critical issues in the growth of multijunction solar cell is the formation of a highly doped Esaki interband tunnel diode which interconnects unit cells of different energy band gap. Small electrical and optical losses are the requirements of such tunnel diodes [1]. To satisfy these requirements, tens of nanometer thick gallium arsenide (GaAs) can be a proper candidate due to its high carrier concentration in low energy band gap. To obtain highly doped GaAs in molecular beam epitaxy, the temperatures of Si Knudsen cell (K-cell) for n-type GaAs and Be K-cell for p-type GaAs were controlled during GaAs epitaxial growth, and the growth rate is set to 1.75 A/s. As a result, the doping concentration of p-type and n-type GaAs increased up to $4.7{\times}10^{19}cm^{-3}$ and $6.2{\times}10^{18}cm^{-3}$, respectively. However, the obtained n-type doping concentration is not sufficient to form a properly operating tunnel diode which requires a doping concentration close to $1.0{\times}10^{19}cm^{-3}$ [2]. To enhance the n-type doping concentration, n-doped GaAs samples were grown with a lower growth rate ranging from 0.318 to 1.123 A/s at a Si K-cell temperature of $1,180^{\circ}C$. As shown in Fig. 1, the n-type doping concentration was increased to $7.7{\times}10^{18}cm^{-3}$ when the growth rate was decreased to 0.318 A/s. The p-type doping concentration also increased to $4.1{\times}10^{19}cm^{-3}$ with the decrease of growth rate to 0.318 A/s. Additionally, bulk resistance was also decreased in both the grown samples. However, a transmission line measurement performed on the n-type GaAs sample grown at the rate of 0.318 A/s showed an increased specific contact resistance of $6.62{\times}10^{-4}{\Omega}{\cdot}cm^{-2}$. This high value of contact resistance is not suitable for forming contacts and interfaces. The increased resistance is attributed to the excessively incorporated dopant during low growth rate. Further studies need to be carried out to evaluate the effect of excess dopants on the operation of tunnel diode.

  • PDF