• 제목/요약/키워드: Contact Start/Stop

검색결과 41건 처리시간 0.033초

마이크로 액추이에터를 장착한 슬라이더의 부상특성 연구 (Investigation of Flying Characteristic of Sliders with Micro-actuator)

  • 문재택;정구현;전종업;김대은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.926-929
    • /
    • 2000
  • As the track density of hard disk drives increases, there is a need for more precise actuation of the head. This can be accomplished by using a high band width micro-actuator. In this work, the flying characteristics of sliders with micro-actuators are investigated with the aim to optimize the head/disk interface performance of such sliders. Contact-start-stop, sweep, and flying height tests are performed and analyzed. The results show that the MEMS based micro-actuator mounted on a slider possess acceptable flying characteristics.

  • PDF

마이크로 액추에이터를 장착한 슬라이더의 부상특성 연구 (Investigation of Flying Characteristics of Slider with Micro-actuator)

  • 문재택;정구현;김대은;전종업
    • 한국정밀공학회지
    • /
    • 제18권9호
    • /
    • pp.96-100
    • /
    • 2001
  • As the track density of hard disk drives increases, there is a need for more precise actuation of the head. This can be accomplished by using a high band width micro-actuator. In this work, the flying characteristics of sliders with micro-actuators are investigated with the aim to optimize the head/disk interface performance of such sliders. Contact-start-stop, sweep, and flying height tests are performed and analyzed. The results show that the MEMS based micro-actuator mounted on a slider possess acceptable flying characteristics.

  • PDF

접촉압력을 고려한 R-134a용 냉도기유의 윤활성 평가 연구

  • 나병철;전경진;한동철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제26회 추계학술대회
    • /
    • pp.145-151
    • /
    • 1997
  • PAG(Polyalkylene Glycol) and esters are tested with HFC-134a as a refrigeration oil. This investigation enhances the testing method by taking the compressor's environment into account. A testing environment charged with refrigerant gas more closely simulates the conditions of a compressor. The friction coetTicient of the PAG/HFC-134a system is similar to that of the mineral oil/CFC-12 system at operating conditions. Ester oils are preferable at the start & stop condition in the lubricity aspect. PAG shows good lubricity in conditions of extreme contact pressure. Consequently, this test provides reliable results on compressor lubricity of refrigeration oils with HFC-134a. It suggests a methodological way for the proper selection of refrigeration oils that may improve the durability and performance of a compressor.

  • PDF

Natural Frequency Analysis of Sliders and Head/Disk Interaction Detection by Acoustic Emission

  • Hwang, Pyung;Pan, Galina;Khan, Polina
    • KSTLE International Journal
    • /
    • 제5권1호
    • /
    • pp.28-31
    • /
    • 2004
  • The object of the present work is the natural frequency analysis of subambient pressure tri-pad and pico sliders. Head/disk interaction during start/stop and constant speed were detected by using the acoustic emission (AE) test system. The frequency spectrum analysis is performed using the AE signal obtained during the head/disk interaction. The FFT (Fast Fourier Transform) analysis of the AE signals is used to understand the interaction between the AE signal and the state of contact. Natural frequency analysis was performed using the Ansys program. The results indicate acceptable accordance of finite element calculation results with the experimental results.

SMA작동기와 연계된 HDD슬라이더의 동특성 및 제어 (Dynamic Characteristics and Control of HDD Slider Integrated with SMA Actuator)

  • 임수철;박종성;박철진;최승복;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.217-224
    • /
    • 2000
  • This paper proposes a new type of HDD suspension integrated with shape memory alloy(SMA) actuator in order to prevent the friction between the slider and the disk. A finite element analysis is undertaken to investigate modal characteristics of the proposed self loading/unloading slider. The dynamic model is formulated and its validity is proved by comparing the predicted displacement transmissibility with the measured one. A control model is then established by integrating experimentally-obtained SMA actuator dynamics. Subsequently, a sliding mode controller is designed to achieve non-contact start/stop(Non CSS) modes, and control results are presented in time domain.

  • PDF

램프 형상에 대한 램프 상의 로드/언로드 동특성 해석 (Load/Unload Dynamics of Slider on Ramp for Various Ramp Shape)

  • 이용현;박경수;박노철;양현석;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.467-472
    • /
    • 2005
  • Load/Unload(L/UL) technology includes the benefits, that is, increased areal density, reduced power consumption and improved shock resistance contrary to contact start stop(CSS). It has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main objectives of L/UL are no slider disk contact or no media damage. For realizing those, we must consider many design parameters in L/UL systems. In this paper, we focus on the effect of the ramp profile. We can find out the lateral velocities in L/UL process through experiments and simulations for force of voice coil motor and friction force on ramp. And then, we will gain the optimal design of ramp slope to maintain the minimum clearance of suspension dimple and slider with FE model. In special, after finding the point at which air bearing breaks and designing the ramp, we will identify the results for improving unload performance.

  • PDF

로드/언로드 성능향상을 위한 서스팬션의 구조최적화 (Integrated Optimal Design for Suspension to Improve Load/Unload Performance)

  • 김기훈;손석호;박경수;윤상준;박노철;양현석;최동훈;박영필
    • 정보저장시스템학회논문집
    • /
    • 제2권2호
    • /
    • pp.130-137
    • /
    • 2006
  • The HDD(hard disk drive) using Load/unload(L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop(CSS). It has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main objects of L/UL are no slider-disk contact or no media damage. For realizing those, we must consider many design parameters in L/UL system. In this paper, we focus on lift-off force. The 'lift-off' force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. To minimize 'lift-off' force we optimizes the slider and suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. As a result, we yield the equation which can easily find a lift-off force and structural optimization for suspension.

  • PDF

VCM 액추에이터의 전자기력을 이용한 HDD 래치 설계 (A HDD Latch Design Using Electro-magnetic Force of VCM Actuators)

  • 김경호;오동호;신부현;이승엽
    • 한국소음진동공학회논문집
    • /
    • 제19권8호
    • /
    • pp.788-794
    • /
    • 2009
  • Various types of latch designs for hard disk drives using load/unload mechanism have been introduced to protect undesired release motions of a voice coil motor(VCM) actuator from sudden disturbances. Recently, various inertia-type latches have been widely used because locking performance is better than that of other types of latch. However there has been a limit in the inertia type in order to guarantee perfect latch and unlatch operations because of changes in latch/unlatch conditions due to mechanical tolerance and temperature-dependent friction. In this paper, a reliable and robust magnetic latch mechanism is proposed through only simple modifications of coil and yoke shapes in order to overcome the mechanical limit of current inertia-type latches. This new magnetic latch does not have only a simple structure but it also ensures reliable operations and anti-shock performance. The operating mechanism of the proposed latch is theoretically analyzed and optimally designed using an electromagnetic simulation.

하드 디스크 드라이브 회전수 변화가 드라이브 내 나노 오염 입자 발생에 미치는 영향 (Effect of Disk Rotational Speed on Contamination Nano Particles Generated in a Hard Disk Drive)

  • 이대영;황정호;배귀남
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.976-983
    • /
    • 2004
  • In high-density hard disk drives, the slider should be made to fly close to the magnetic recording disk to generate better signal resolution and at an increasingly high velocity to achieve better data rate. The slider disk interaction in CSS (contact-start-stop) mode is an important source of particle generation. Contamination particles in the hard disk drive can cause serious problems including slider crash and thermal asperities. We investigated the number and the sizes of particles generated in the hard disk drive, operating at increasing disk rotational speeds, in the CSS mode. CNC (condensation nucleus counter) and PSS (particle size selector) were used for this investigation. In addition, we examined the particle components by using SEM (scanning electron microscopes), AES (auger electron spectroscopy), and TOF-SIMS (time of flight-secondary ions mass spectrometry). The increasing disk rotational speed directly affected the particle generation by slider disk interaction. The number of particles that were generated increased with the disk rotational speed. The particle generation rate increased rapidly at motor speeds above 8000 rpm. This increase may be due to the increased slider disk interaction. Particle sizes ranged from 14 to 200 nm. The particles generated by slider disk interaction came from the lubricant on the disk, coating layer of the disk, and also slider surface.

에어 스테이지의 동적 특성에 미치는 가속도 및 감속도의 영향 (Effect of the Acceleration and Deceleration on the Dynamic Characteristics of an Air Stage)

  • 박상준;이재혁;박상신;김규하
    • Tribology and Lubricants
    • /
    • 제36권1호
    • /
    • pp.39-46
    • /
    • 2020
  • Air stages are usually applied to precision engineering in sectors such as the semiconductor industry owing to their excellent performance and extremely low friction. Since the productivity of a semiconductor depends on the acceleration and deceleration performance of the air stage, many attempts have been made to improve the speed of the stage. Even during sudden start or stop sequences, the stage should maintain an air film to avoid direct contact between pad and the rail. The purpose of this study is to quantitatively predict the dynamic behavior of the air stage when acceleration and deceleration occur. The air stage is composed of two parts; the stage and the guide-way. The stage transports objects to the guideway, which is supported by an externally pressurized gas bearing. In this study, we use COMSOL Multiphysics to calculate the pressure of the air film between the stage and the guide-way and solve the two-degree-of-freedom equations of motion of the stage. Based on the specified velocity conditions such as the acceleration time and the maximum velocity of stage, we calculate the eccentricity and tilting angle of the stage. The result shows that the stiffness and damping of the gas bearing have non-linear characteristics. Hence, we should consider the operating conditions in the design process of an air stage system because the dynamic behavior of the stage becomes unstable depending on the maximum velocity and the acceleration time.