• Title/Summary/Keyword: Contact Pressure Sensor

Search Result 94, Processing Time 0.024 seconds

Quantitative Monitoring of Body Pressure Distribution Using Built-in Optical Sensors

  • Lee, Kang-Ho;Kwon, Yeong-Eun;Seo, Jihyeon;Lee, Byunghun;Lee, Dongkyu;Kwon, Ohwon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.279-282
    • /
    • 2020
  • In this study, body pressure was quantitatively detected using built-in optical sensors, inside an air cushion seat. The proposed system visualizes the effect of the body pressure distribution on the air cushion seat. The built-in sensor is based on the time-of-flight (ToF) optical method, instead of the conventional electrical sensor. A ToF optical sensors is attached to the bottom surface of the air-filled cells in the air cushion. Therefore, ToF sensors are durable, as they do not come in physical contact with the body even after repeated use. A ToF sensor indirectly expresses the body pressure by measuring the change in the height of the air-filled cell, after being subjected to the weight of the body. An array of such sensors can measure the body pressure distribution when the user sits on the air cushion seat. We implemented a prototype of the air cushion seat equipped with 7 ToF optical sensors and investigated its characteristics. In this experiment, the ToF optical pressure sensor successfully identified the pressure distribution corresponding to a sitting position. The data were accessed through a mobile device.

A Study of B-implanted n Type Si Epi Resistor for the Fabrication of Thermal Stable Pressure Sensor (열적 안정한 압력센서 제작을 위한 보론(B) 이온 주입 n형 Si 에피 전극 연구)

  • Choi, Kyeong-Keun;Kang, Moon Sik
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.40-46
    • /
    • 2018
  • In this paper, we focus on optimization of a boron ($^{11}B$)-implanted n type Si epi substrate for obtaining near-zero temperature coefficient of resistance (TCR) at temperature range from 25 to $125^{\circ}C$. The $^{11}B$-implantation on the N type-Si epi substrate formed isolation from the rest of the N-type Si by the depletion region of a PN junction. The TCR increased as the temperature of rapid thermal anneal (RTA) was increased at the temperature range from $900^{\circ}C$ to $1000^{\circ}C$ for the $p^+$ contact with implantation at dose of $1E16/cm^2$, but sheet resistance of this film was decreased. After the optimization of anneal process condition, the TCR of $1126.7{\pm}30.3$ (ppm/K) was obtained for the $p^-$ resistor-COB package chips contained $p^+$ contact with the implantation of $5E14/cm^2$. This shows the potential of the $^{11}B$-implanted n type Si epi substrate as a resistor for pressure sensor in thermal stable environment applications..

In-situ P-doped LPCVD Poly Si Films as the Electrodes of Pressure Sensor for High Temperature Applications (고온용 압력센서 응용을 위한 in-situ 인(P)-도핑 LPCVD Poly Si 전극)

  • Choi, Kyeong-Keun;Kee, Jong;Lee, Jeong-Yoon;Kang, Moon Sik
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.438-444
    • /
    • 2017
  • In this paper, we focus on optimization of the in-situ phosphorous (P) doping of low-pressure chemical vapor deposited (LPCVD) poly Si resistors for obtaining near-zero temperature coefficient of resistance (TCR) at temperature range from 25 to $600^{\circ}C$. The deposited poly Si films were annealed by rapid thermal anneal (RTA) process at the temperature range from 900 to $1000^{\circ}C$ for 90s in nitrogen ambient to relieve intrinsic stress and decrease the TCR in the poly Si layer and get the Ohmic contact. After the RTA process, a roughness of the thin film was slightly changed but the grain size and crystallinity of the thin film with the increase in anneal temperature. The film annealed at $1,000^{\circ}C$ showed the behavior of Schottky contact and had dislocations in the films. Ohmic contact and TCR of $334.4{\pm}8.2$ (ppm/K) within 4 inch wafer were obtained in the measuring temperature range of 25 to $600^{\circ}C$ for the optimized 200 nm thick-poly Si film with width/length of $20{\mu}m/1,800{\mu}m$. This shows the potential of in-situ P doped LPCVD poly Si as a resistor for pressure sensor in harsh environment applications.

Contact Resistance between Flexible Tactile Sensor Fabricated by Direct Write and Copper Alloy Terminals (Direct write 기술로 제작된 유연촉각센서와 동합금 단자의 접촉저항)

  • Kim, Jindong;Bae, Yonghwan;Yun, Haeyong;Lee, Inhwan;Kim, Hochan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.111-116
    • /
    • 2020
  • Flexible tactile sensors, which are primarily used as grippers in robots, are mainly used to handle highly elastic or highly flexible objects. That is, flexible grippers are used when an object cannot be sufficiently controlled by applying a specific output force or taking a specific grabbing action. This is because a flexible tactile sensor needs to measure the pressure applied directly to held objects while deforming according to the shape of the object to be handled. CNT-based sensors used to be made from a highly flexible polymer to give flexibility and it is known that the sensors are greatly affected by the contact resistance of the terminal that connects the sensor to an electrical circuit; therefore, this paper clarifies the contact resistance of MWCNTs-based flexible tactile sensors and terminals. The effects of main and plating materials for terminals are investigated and the combinations of main and plating materials that exhibit contact resistance are measured in a typical industrial environment.

The Effects of Contact Hand-Orientation Response(CHOR) During Sit-to-stand(STS) in People with Stroke (접촉성 손-위치 반응(Contactual Hand-Orientating Response)이 만성 뇌졸중환자의 일어서기 동작에 미치는 영향)

  • Seo, Tae-Hwa;Yang, Si-Eun;Lee, Hong-Gyun
    • The Journal of Korean Society for Neurotherapy
    • /
    • v.22 no.3
    • /
    • pp.31-36
    • /
    • 2018
  • Purpose The purpose of this study was to investigate the effects of contact handorientation response(CHOR) during sit-to-stand(STS) in people with stroke. Methods The subjects of the study were Thirty hemiplegia participated (Rt. hemiplegia/Lt. hemiplegia: 15/15, mean age: $65.82{\pm}8.53$) in this study. The analysis of muscles activation (rectus femoris, biceps femoris, tibialis anterior, gastrocnemius) distribution was conducted by the EMG, and the analysis of foot pressure distribution was conducted by the resistive pressure sensor. Hemiplegic stroke patients were instructed to perform STS three times with the non-affected side hand and affected side hand on the table. Results There was a significant positive correlation between rectus femoris, tibialis anterior muscle activation and affected side hand contact during STS(p<0.05). The STS correlated with the foot pressure in the affected side hand contact(p<0.05). Conclusion AS a result, CHOR during STS is related to muscle activation and the characteristics of foot pressure. This information was observed in the affected side hand contact on the table, suggestion that rehabilitation programs should be implemented.

A Study on Sensing Method of the Stack Coolant Deficiency for FCEV (연료전지 차량 스택 냉각수 부족 감지 방법에 관한 연구)

  • Kim, Hyung Kook;Han, Su Dong;Nam, Gi Young;Kim, Chi Myung;Park, Yong Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.525-532
    • /
    • 2014
  • The sensing of a stack coolant deficiency is very important in that cooling performance of a fuel cell, overheating prevention of a stack or coolant heater. This paper explains the performance comparison between the coolant contact/noncontact level sensors and coolant deficiency sensing logic using the pressure sensor in a stagnant or circulating flow. Throughout the comparison, the pressure sensor is more suitable than the other sensors in terms of the precision, fast response, sensing frequency. After the experiment, the pressure sensor is equipped to an FCEV(Fuel Cell Electric Vehicle) to verify sensing definitely. There was no miss-sensing using pressure sensor while FCEV runs in the conditions of the paved road and cross country road.

Development of Fingertip Tactile Sensor for Detecting Normal Force and Slip

  • Choi, Byung-June;Kang, Sung-Chul;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1808-1813
    • /
    • 2005
  • In this paper, we present the finger tip tactile sensor which can detect contact normal force as well as slip. The developed sensor is made of two different materials, such as polyvinylidene fluoride(PVDF) that is known as piezoelectric polymer and pressure variable resistor ink. In order to detect slip to surface of object, a PVDF strip is arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, we developed a tactile sensing system by miniaturizing the charge amplifier, in order to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.

  • PDF

Comparison of the Contact Area, Maximum Pressure, Maximum Average Pressure and Maximum Force between Functional Insoles and General Insoles (기능성 인솔과 일반 인솔의 발에 대한 접촉 면적, 최대 압력, 최대 평균압력 및 최대 힘 비교)

  • Lee, Su-Kyoung
    • PNF and Movement
    • /
    • v.20 no.3
    • /
    • pp.431-441
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the changes in the contact area, maximum pressure, maximum mean pressure, and maximum force of functional insoles and general insoles when walking. Methods: Foot pressure was measured by the ignition of functional insoles and general insoles on Company N shoes. The foot pressure was measured using a precision pressure distribution meter (Pedar - X mobile system, Novel, Germany). Each insole sensor contained 99 independent cells and was inserted between the foot and the shoe. A wireless Bluetooth-type program was used to measure the pressure detected by the measuring insoles. In order to eliminate adaptation and fatigue caused by wearing the guide during the experiment, sufficient rest was taken between each experiment, and the wearing order was randomly selected. Results: Functional insole significantly increased the forefoot and midfoot (medial, lateral) (p<0.05), while total foot, forefoot, and rearfoot peak pressure significantly decreased (p < 0.05) compared to the general insole. Conclusion: In the functional insole, a high contact area was measured inside, even in the middle of the foot, leading to a proper change in foot pressure. It was confirmed that the contact area was reduced and dispersion occurred well. In addition, it was found that the maximum pressure in the front and back of the entire foot was reduced, so the weight pressure dispersion in the functional insole was evenly distributed, and the maximum average pressure change was similar.

A Study on Process Characterization based on Vibration Signals Transmitted to the Mold in the Press Molding Process (프레스성형공정에서 금형에 전달되는 진동 신호에 기반한 공정특성 분석에 대한 연구)

  • Junhan Lee;Jongsun Kim
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.56-63
    • /
    • 2023
  • In this study, the vibration signal of the mold was measured and analyzed to monitor the process information and characteristics during the press molding process. A necklace-type picture frame mold was used for press molding, and the vibration signal was measured by GY-61 acceleration sensor module attached to the surface of the upper (movable) mold base. The change of the vibration signal of the mold according to press speed was analyzed. As a result, the vibration signal had a large change at five sections: "Holder contact", "Punch contact and start of pressing", "End of pressing", "Mold open", and "Demolding". The time difference between "Punch contact and start of pressing" and "End of pressing" means the pressing time which is the actual time the material is molded under pressing pressure. The time intervals for each section, represented by the time interval between "Holder contact" and "Punch contact and start of pressing", can be used to compare and evaluate the press speed applied to the process. By comparing the vibration signals at 60 rpm and 90 rpm, the amplitude at the section of "Punch contact and start of pressing" increased as the press speed increased. This result means that as the press speed increases, more force and pressure is applied to the material. Also, the peak values of the other sections were found to increase as the press speed increased. It was found that the pressing time, the time interval between "Punch contact and start of pressing" and "End of pressing", decreases as the pressing speed increases. Similarly, press speed factor, the time interval between "Holder contact", and "Punch contact and start of pressing", is found to be shorter. Therefore, based on the result of this study, the pressing time, press speed, pressing(punching) pressure of each cycle can be monitored by measuring the vibration signal of the mold. Also, it was confirmed that the level and trend of process information and characterization can be evaluated as the change of the mold vibration during press molding.

  • PDF

An evaluation on sealing performance of elastomeric O-ring compressed and highly pressurized (압축 및 내압을 받는 고무 오링의 기밀 성능 평가)

  • Park, Sung-Han;Kim, Jae-Hoon;Kim, Won-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.86-93
    • /
    • 2009
  • Elastomeric O-rings have been the most common seals due to their excellent sealing capacity, and availability in costs and sizes. One of the critical applications of O-ring seals is solid rocket motor joint seal where the operating hot gas must be sealed during the combustion. This has long been a design issue to avoid the system failure. For laterally constrained, squeezed and pressurized condition, deformed shape of O-ring was measured by computed tomography method and CCD laser sensor, compared with numerical calculations. As clearance gap changes, sealing performance had been evaluated on peak contact stresses at top, bottom and side contact surfaces. As clearance gap increases, peak contact stresses and contact widths in top and side contact surfaces increase, and the asymmetry of stress distributions is promoted due to pressure increase. It is suggested that peak stress of bottom contact surface can be approximated by simple superposition of peak ones due to squeeze and pressure. Under pressurized condition, sealing performance is dependent on not peak stresses of bottom and side contact surfaces but that of top.