• 제목/요약/키워드: Contact Molding

검색결과 100건 처리시간 0.025초

고주파 유도가열을 적용한 사출성형품의 웰드라인 개선 (Improvement of Weldlines of an Injection Molded Part with the Aid of High-Frequency Induction Heating)

  • 서영수;손동휘;박근
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.437-440
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner. Thanks to its capability of rapid heating and cooling of mold surface, it has been recently applied to the injection molding. The present study applies the high-frequency induction heating for elimination of weldlines in an injection-molded plastic part. To eliminate weldlines, the mold temperature of the corresponding weld locations should be maintained higher than the glass transition temperature of the resin material. Through experiments, the maximum temperature of $143^{\circ}C$ is obtained on the mold surface around the elliptic coil, while the temperature of the mold plate is lower than $60^{\circ}C$. An injection molding experiment is then performed with the aid of induction heating, and the effect of induction heating conditions on the surface appearance of the weldline is investigated.

  • PDF

초음파진동에너지를 이용한 고분자 마이크로구조물의 성형 (Polymer Replication Using Ultrasonic Vibration)

  • 유현우;이치훈;고종수;신보성;노치현
    • 대한기계학회논문집A
    • /
    • 제32권5호
    • /
    • pp.419-423
    • /
    • 2008
  • A new polymer replication technology using ultrasonic vibration is proposed and demonstrated. A commercial ultrasonic welder has been used in this experiment. Two different types of nickel molds have been fabricated: pillar type and pore type microstructures. Polymethyl methacrlylate (PMMA) has been used as the replication material and the optimal molding time was 2 sec and 2.5 sec for pillar-type and pore-type micromolds, respectively. Compared with the conventional polymer micromolding techniques, the proposed ultrasonic micromolding technique has the shortest processing time. In addition, only contact area between micromold and polymer substrate is melted so that the thermal shrinkage can be minimized. The fabricated PMMA microstructures have been very accurately replicated without vacuum. The proposed ultrasonic molding technique is a good alternative for high volume production.

사출기용 배럴의 거동 특성에 관한 수치적 연구 (A Study on Contact Dynamic Characteristics of Screw and Barrels in Injection Molding Machine)

  • 조승현;김청균;이일권
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.341-347
    • /
    • 2003
  • Single flighted screw extrusion is the most cost effective method for the production of film, sheet, pipe and the fundamental step in other processes including blow molding and injection molding The temperature and injection pressure in barrel play a very important role in quality of products. Because thermal distortion and displacement of barrel by temperature difference and injection pressure difference cause irregular resine melting and flow. In this paper thermal distortion and stress of barrel includes pressure and temperature distributions by finite element analysis to understand dynamic characteristics of barrel.

  • PDF

재료의 선택적 사용에 의한 금형의 국부적 유도가열기법 (Localized Induction-Heating Method by the Use of Selective Mold Material)

  • 박근;도범석;박정민;이상익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.168-171
    • /
    • 2009
  • High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact procedure. Though the induction heating has an advantage in terms of its rapid-heating capacity on the mold surface, it still has a restriction on mold temperature control due to geometric restriction of an induction coil according to the mold shape. It has been recently applied to the injection molding of thin-walled parts or micro/nano structures. For localized induction heating, an injection mold composed of ferromagnetic material and paramagnetic material is used. The electromagnetic induction concentrates on the ferromagnetic material, from which we can selectively heat for the local mold elements. The present study proposed a localized induction heating method by means of selective use of mold material. The feasibility of the proposed heating method is investigated through the comparison of experimental observations according to the mold material.

  • PDF

프레스 공정을 이용한 미세 골판형 내부구조재 제작에 관한 연구 (A Study on Fabrication of Inner Structure Plate with Micro Corrugated Using Press Forming)

  • 최두선;제태진;김형종;김보환;허병우;성대용
    • 한국정밀공학회지
    • /
    • 제23권9호
    • /
    • pp.61-67
    • /
    • 2006
  • Sandwich structures, which are composed of a thick core between two faces, are commonly used in many engineering applications because they combine high stiffness and strength with low weight. Accordingly, the usage of sandwich structure is very widely applied to the aircraft, the automobile and marine industry, etc., because of these advantages. In this paper, we have investigated the buckling protection of an inner structure plate and the useful corrugated configuration for contact, and the fabrication method of the inner structure plate for large area using the continuous molding process. Also, we have guaranteed the accuracy of the molding process through the micro corrugated mold fabrication and secured the accuracy and analyzed aspect properties of the inner structure plate fabricated for a large area using the partial mold process. We have compared molding simulation according to the aspect thickness of the corrugated configuration with the molding experiment results.

미소접촉인쇄 공정용 철형 PDMS 스템프 제작을 위한 Pyrex 7740 glass 표면의 연성영역 나노패터닝 (Ductile-Regime Nanopatterning on Pyrex 7740 Glass Surface and Its Application to the Fabrication of Positive-tone PDMS Stamp for Microcontact Printing (${\mu}CP$))

  • 김현일;윤성원;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.40-43
    • /
    • 2004
  • Stamps for microcontact processing are fabricated by casting elastomer such as PDMS on a master with a negative of the desired pattern. After curing, the PDMS stamp is peeled away from the master and exposed to a solution of ink and then dried. Transfer of the ink from the PDMS stamp to the substrate occurs during a brief contact between stamp and substrate. Generally, negative-tone masters, which are used for making positive-tone PDMS stamps, are fabricated by using photolithographic technique. The shortcomings of photolithography are a relative high-cost process and require extensive processing time and heavy capital investment to build and maintain the fabrication facilities. The goal of this study is to fabricate a negative-tone master by using Nano-indenter based patterning technique. Various sizes of V-grooves and U-groove were fabricated by using the combination of nanoscratch and HF isotropic etching technique. An achieved negative-tone structure was used as a master in the PDMS replica molding process to fabricate a positive-tone PDMS stamp.

  • PDF

The Characterization of the Resin Bonded Graphite Composite Bipolar Plate using Isotropic Graphite Powder for PEM Fuel Cell

  • Cho, Kwang-Youn;Riu, Doh-Hyung;Hui, Seung-Hun;Kim, Hong-Suk;Chung, Yoon-Jung;Lim, Yun-Soo
    • Carbon letters
    • /
    • 제8권4호
    • /
    • pp.326-334
    • /
    • 2007
  • In this study, graphite composites were fabricated by warm press molding method to realize commercialization of PEM fuel cells. Graphite composites have been considered as alternative economic materials for bipolar plate of PEM fuel cells. Graphite powder that enables to provide electrical conductivity was selected as the main substance. The graphite powder was mixed with phenolic resin and the mixture was pressed using a warm press method. First of all, the graphite powder was pulverized with a ball mill for the dense packing of composite. As the ball milling time increases, the average size of particles decreases and the size distribution becomes narrow. This allows for improvement of the uniformity of graphite composite. However, the surface electrical resistivity of graphite composite increases as the ball milling time increases. It is due to that graphite particles with amorphous phase are generated on the surface due to the friction and collision of particles during pulverizing. We found that the contact electrical resistivity of graphite particles increases as the particle size decreases. The contact electrical resistivity of graphite powders was reduced due to high molding pressure by warm press molding. This leads to improvement of the mechanical properties of graphite composite. Hydrogen gas impermeability was measured with the graphite composite, showing a possibility of the application for bipolar plate in fuel cell. And, I-V curves of the graphite composite bipolar plate exhibit a similar performance to the graphite bipolar plate.

섬유의 표면개질이 수지이동 성형공정에서의 유동특성 및 젖음성에 미치는 영향 (Effects of Fiber Surface Modification on the Flow Characteristics and Wettability in the Resin Transfer Molding Process)

  • 김세현;이건웅;이종훈;김성우;이기준
    • 유변학
    • /
    • 제11권1호
    • /
    • pp.34-43
    • /
    • 1999
  • 수지 이동 성형공정에서 섬유직조가 수지에 의해 함침될 때 발생하는 기공 또는 나쁜 젖음성은 최종 성형품의 물성 저하에 심각한 영향을 미치게 된다. 본 연구에서는 수지이동 성형공정에서의 이러한 문제점을 극복하기 위한 기초 데이터를 제공하기 위하여, 실란 커플링제를 사용한 섬유의 표면 개질이 수지의 유동특성과 수지와 섬유 사이의 젖음성 및 기공함량에 미치는 영향을 조사하였다. 빔 형태의 금형을 대상으로 에폭시 수지와 평직형태의 유리섬유를 사용하여 미시적인 유동가시화 실험 및 경화실험을 수행하였다. 섬유의 표면을 개질함으로써 수지와 섬유 사이의 동적 접촉각이 감소하고 위킹속도는 증가한 것으로 나타났으며, 이러한 결과로부터 본 연구에서 사용한 화학적 표면개질이 섬유직조의 젖음성 및 미시적 흐름 거동을 향상시킬 수 있는 중요한 요인임을 확인할 수 있었다. 또한 수지의 높은 온도와 낮은 침투 속도는 동적 접촉각을 감소시키기 위한 중요한 가공 변수임을 알 수 있었다. 그러나 섬유직조의 투과성은 표면을 개질하였을 경우 오히려 감소하였는데, 이는 젖음성의 향상으로 인하여 수지와 섬유 사이의 접촉시간의 증가에 기인하는 것으로 생각된다. 마지막으로 경화공정을 통해 제조된 시편의 기공 함량을 측정 비교한 결과, 표면개질은 수지이동 성형공정에서의 기공형성에도 중요한 변수로 작용하여, 수지와 섬유 사이의 젖음성을 향상시키고, 최종 성형품의 기공함량을 감소시킴을 확인할 수 있었다.

  • PDF

표면개질에 의한 물방울 접촉각 변화를 이용하여 제작된 PDMS 마이크로 렌즈 (Fabrication method of PDMS microlensesusing water-based molding method)

  • 김홍기;윤광석
    • 센서학회지
    • /
    • 제17권5호
    • /
    • pp.375-379
    • /
    • 2008
  • This paper reports a new fabrication method of polydimethylsiloxane (PDMS) microlenses with various curvatures by using a water-based mold. The hydrophobic surface of Polypropylene (PP) substrate was modified by corona discharge using tesla coil to have hydrophilic surface. Then hydrophilic surface of PP substrate takes hydrophobic recovery to have various contact angles from less than $25^{\circ}$ to about $84^{\circ}$. By using the water droplets with various contact angles as replica molds for PDMS process, we could obtain PDMS microlenses with various curvatures.

고주파유도 급속 금형가열 과정의 3차원 유한요소해석 (Three-Dimensional Finite Element Analysis of the Induction Heating Procedure of an Injection Mold)

  • 손동휘;서영수;박근
    • 소성∙가공
    • /
    • 제19권3호
    • /
    • pp.152-159
    • /
    • 2010
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner, and has been recently applied to the injection molding due to its capability of rapid heating and cooling of mold surface. The present study covers a three-dimensional finite element analysis to investigate heating efficiency and structural safety of the induction heating process of an injection mold. To simulate the induction heating process, an integrated simulation method is proposed by effectively connecting an electromagnetic field analysis, a transient heat transfer analysis and a thermal stress analysis. The estimated temperature changes are compared with experimental measurements for various types of induction coil, from which heating efficiency according to the coil shape is discussed. The resulting thermal stress distributions of the mold plate for various types of induction coils are also evaluated and discussed in terms of the structural safety.