• Title/Summary/Keyword: Contact Impact

Search Result 702, Processing Time 0.024 seconds

Analysis of Multi-Chained and Multiple Contact Characteristics of Foot Mechanisms in Aspect of Impulse Absorption (다수 체인과 다중 접촉 성격을 지닌 발 메커니즘에 대한 충격량 흡수 기반 해석)

  • Seo, Jong-Tae;Oh, Se Min;Yi, Byung-Ju
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.161-172
    • /
    • 2017
  • Foot mechanisms play the role of interface between the main body of robotic systems and the ground. Biomimetic design of the foot mechanism is proposed in the paper. Specifically, multi-chained and multiple contact characteristics of general foot mechanisms are analyzed and their advantages are highlighted in terms of impulse. Using Newton-Euler based closed-form external and internal impulse models, characteristics of multiple contact cases are investigated through landing simulation of an articulated leg model with three kinds of foot. It is shown that in comparison to single chain and less articulated linkage system, multi-chain and articulated linkage system has superior characteristic in terms of impulse absorption as well as stability after collision. The effectiveness of the simulation result is verified through comparison to the simulation result of a commercialized software.

Optimal Cam profile for Elevator Door opening mechanism (엘리베이터 문짝의 최적 운동 곡선)

  • Jun, Kyoung-Jin;Sohn, Jeong-Hyun;Yoo, Wan-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.454-458
    • /
    • 2001
  • In this paper, contact between the coupler-roller and guide in elevator door mechanism is modeled and analyzed with DADS 3D program. The contact force of coupler-roller is an important factor for impact and noise reduction when doors of elevator are opened or closed. To minimize the maximum contact force, an optimal cam profile for the door guide is suggested. To find an optimal shape of the guide, several types of motion curve are tested with DADS contact module.

  • PDF

Multimarket Contact and Risk-Adjusted Profitability in the Banking Sector: Empirical Evidence from Vietnam

  • DAO, Oanh Le Kieu;HO, Tuyen Thi Ngoc;LE, Hac Dinh;DUONG, Nga Quynh
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.1171-1180
    • /
    • 2021
  • This study aims to investigate the impact of the multimarket contract on risk-adjusted profitability. Risk-adjusted profitability is measured in terms of risk-adjusted return on assets. This study employs dynamic panel data of 27 commercial banks in Vietnam using the GMM estimator to test the multimarket contact hypothesis in the Vietnamese banking sector. The results show that there is a negative impact of multimarket contact on the profitability of banks. Multimarket contact, deposit to asset ratio, non-interest income to total income, GDP growth rate, Worldwide Governance Indicator (WGI), and operating cost to assets are the major determinants of risk-adjusted profitability of commercial banks. Our main findings show that Vietnamese banks' focus to increase the multimarket contact may lead to lower profitability and there is evidence that supports theory predictions, since the average number of contacts among banks, bank size, and capitalization are positively related to risk-adjusted profitability. The study has policy implications for commercial banks in that they should not only focus on interest as a source of income and diversify their income source from non-interest income as well since it helps to improve risk-adjusted profitability for them.

Numerical Study of Heat Transfer Associated with Droplet Impact (액적 충돌에 동반된 열전달에 관한 수치적 연구)

  • Kim, Sung-Il;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1093-1100
    • /
    • 2004
  • Numerical analysis of the heat transfer associated with droplet impact on a hot solid surface is performed by solving the equations governing conservation of mass, momentum and energy in the liquid and gas phases. The deformed droplet shape is tracked by a level set method which is modified to achieve volume conservation and to include the effect of contact angle at the wall. The numerical method is validated through the calculations for the cases reported in the literature. Based on the numerical results, the heat transfer rate is found to depend strongly on the droplet spread radius. Decreased advancing/receding contact angles enlarge the splat radius and in turn enhance the wall heat flux. The effect of impact velocity on the droplet spread is reduced as the droplet size decreases. Also, droplet atomization is observed to significantly enhance the heat transfer rate and the effect is pronounced for a smaller size of droplet. An existing model equation to predict the maximum spread radius is improved for application to a micro droplet.

Dynamic analysis of viscoelastic concrete plates containing nanoparticle subjected to low velocity impact load

  • Luo, Jijun;Lv, Meng;Hou, Suxia;Nasihatgozar, Mohsen;Behshad, Amir
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.369-378
    • /
    • 2022
  • Dynamic study of concrete plates under impact load is presented in this article. The main objective of this work is presenting a mathematical model for the concrete plates under the impact load. The concrete plate is reinforced by carbon nanoparticles which the effective material proprieties are obtained by mixture's rule. Impacts are assumed to occur normally over the top layer of the plate and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the classical plate theory (CPT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure are calculated numerically so that the effects of mass, velocity and height of the impactor, volume percent of nanoparticles, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the volume percent of nanoparticles yields to decreases in the deflection.

Social Network Contact Frequency and Life Satisfaction of the Elderly: Focusing on the Moderating Effect of Digital Capabilities (노인의 사회적 관계망 접촉빈도와 삶의 만족도: 디지털역량의 조절효과를 중심으로)

  • Eun Hye Kim
    • Human Ecology Research
    • /
    • v.62 no.2
    • /
    • pp.217-231
    • /
    • 2024
  • The aims of this study were to identify (a) the social network contact frequency of the elderly with children, relatives, and friends; (b) the impact of contact frequency (face-to-face/non-face-to-face) on life satisfaction of the elderly; and (c) the moderating effect of digital capabilities of the elderly on the relationship between social contact frequency and life satisfaction. Data were obtained from the National Survey of Older Koreans 2020. The sample comprised 6,119 adults aged 65+ who were in single or couple households. The principal findings were as follows. First, couple households, higher levels of education, and better health status increased life satisfaction of the elderly. Second, the higher the frequency of face-to-face contact with children and the higher the frequency of non-face-to-face contact with friends, the more positive the effect on life satisfaction of the elderly. Third, the interaction effect of the digital capabilities of the elderly differed according to children, relatives and friends. There was a significant and positive moderating effect on the relationship between life satisfaction and the frequency of face-to-face/non-face-to-face contact with children and the frequency of face-to-face contact with relatives. Conversely, there was a significant negative effect on the relationship between life satisfaction and the frequency of face-to-face/non-face-to-face contact with friends. By examining the impact of non-face-to-face contact on life satisfaction of the elderly in the era of digital transformation, the findings have significance in that they provide basic data to support policies and education programs aimed at improving the digital capabilities of the elderly.

Impact Damage on Brittle Materials with Small Spheres (I) (취성재료의 소구충돌에 의한 충격손상 (I))

  • U, Su-Chang;Kim, Mun-Saeng;Sin, Hyeong-Seop;Lee, Hyeon-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.93-100
    • /
    • 2001
  • Brittle materials are very weak for impact because of typical characteristics which happen to be easily fractured with low fracture toughness and crack sensitivity. When brittle materials are subjected to impact due to small spheres, high contact pressure is occurred to impact surface and then local damage on specimen is developed, since there are little plastic deformations due to contact pressure compared to metals. This local damage is a dangerous factor which gives rise to final fracture of structures. In this research, the crack propagation process of soda lime glass by impact of small sphere is explained and the effects of the constraint conditions of impact spheres and materials for the material damage were studied by using soda-lime glass. that is the effects for the materials and sizes of impact ball, thickness of specimen and residual strength. Especially, this research has focused on the damage behavior of ring crack, cone crack and several kinds of cracks.

  • PDF

Low-velocity Impact Damage of a Thick Pressure vessel (복합재료 만든 두꺼운 압력용기의 저속충격에 관한 연구)

  • 김형원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.92-97
    • /
    • 2000
  • Low-velocity impact damage of a thick pressure vessel by composite materials was studied using the modified Herzian contact radius theory. Impactors of various masses and various tup shapes were dropped freely in the range of 20m to 200mm height. With acceleration gage and strain gage installed on the impactor, impact force and acceleration and Contact radius were measured. After a test, the samples were radiographed to scan the state of damage. Compared with hemispherical tup of 12.7mm diameter, the contact radius of hemispherical tup of 25.4mm diameter was bigger. And the experimental data and the theoretical data was different due to the mechanical properties difference. The acceleration value was changed linearly according to the height.

  • PDF

Estimation of Allowable Drop Height for Oriental Pears by Impact Tests (충격시험에 따른 배의 허용낙하높이 추정)

  • Kim, M. S.;Jung, H. M.;Seo, R.;Park, I. K.;Hwang, Y. S.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.461-468
    • /
    • 2001
  • Impact between fruits and other materials is a major cause of product damage in harvesting and handling systems. The oriental pears are more susceptible to bruising than other fruits such as European pears and apples, and are required more careful handling. The interest in the handling of the pears for the processing systems has raised the question of the allowable drop height to which pears can be dropped without causing objectionable damage. Drop tests on pears were conducted using an impact device developed by authors to estimate the allowable drop height without bruising. The impact device was constructed to hold in a selected orientation and to release a fruit by vacuum for dropping on to a force transducer. The drop height was adjustable for zero to 60 cm to achieve the desired distance between the bottom of the fruits and the top of the impact force transducer. The transducer was secured to 150 kg$\sub$f/ concrete block. The transducer signal was sampled every 0.17 ms with a strain gage measurement board in the micro computer where it was digitaly stored for later analysis. The selected sample fruit was Niitaka cultivar of pears which is one of the most promising fruit for export in Korea. The pears were harvested during the 1998 harvest season from an orchard in Daejeon. The sample fruit was selected from two groups which were stored for 3 months and 5 months respectively by the method of current commercial practice. The pears were allowed to stabilize at environmental condition(18$^{\circ}C$, 65% rh) of the experimental room. One hundred fifty six pears were tested from the heights of 5, 7.5. 10 and 12.5 cm while measurement were made of impact peak force, contact time, time to peak force, dwell time, pear diameter and mass. The bioyield strength and modulus of elasticity were measured using UTM immediately after each drop test. The allowable drop height was estimated on the base of bioyield strength of the pears in two ways. One was assumed the peak force during impact test increasing linearly with time, and the other was based on the actual drop test results. The computer program was developed for measuring the impact characteristics of the pears and analyzing the data obtained in the study. The peak force increased while contact times decreased with increasing drop height and contact times of the sample from the hard tissue group. The allowable drop height increased with increasing bioyield strength and contact times, and also varied with Poisson\`s ratio, mass and equilibrium radius of the pears. The allowable drop height calculated by a theoretical method was in the range from 1 to 4 cm, meanwhile, the estimated drop height considering the result of the impact test was in the range from 1 to 6 cm. Since the physical properties of fruits affected significantly the allowable drop height, the physical properties of the fruits should be considered when estimating the allowable drop height.

  • PDF

Evaluation on the Impact Resistant Performance of Fiber Reinforced Concrete by High-Velocity Projectile and Contacted Explosion (고속비상체 충돌 및 접촉폭발에 의한 섬유보강 콘크리트의 내충격 성능 평가)

  • Nam, Jeong-Soo;Kim, Hong-Seop;Lee, In-Cheol;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2013
  • In this study we experimentally evaluated an impact resistant performance of fiber reinforced concrete in the moment of explosion by high-velocity projectile with emulsion explosive. To assess the impact resistance, we conducted the impact test of high-velocity projectile which reaches an impact speed of 350 m/s and the experiment of contact exploding emulsion explosive. As a result, bending and tensile performance depending on type of PVA, PE fiber (polyvinyl alcohol fiber, polyethylene fiber) and steel fiber affects destruction of rear side in the form of spalling. Destroying the backside of the concrete compressive strength compared to suppress the bending and tensile performance is affected. In addition, the experiment shows that the destruction patterns of concrete specimen producted by high velocity impact and contact explosion are significantly similar. Therefore, it is possible to predict the destruction patterns of specimens in the situation of contact explosion by high-velocity projectile.