• Title/Summary/Keyword: Contact Ellipse

Search Result 15, Processing Time 0.018 seconds

Development of Adaptive RCC Mechanism Using Double-Actuator Units (여자유도 액츄에이터를 이용한 능동RCC 장치의 개발)

  • Lim, Hyok-Jin;Kim, Byeong-Sang;Kang, Byung-Duk;Song, Jae-Bok;Park, Shin-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.168-177
    • /
    • 2007
  • In a number of fields, robots are being used for two purposes: efficiency and safety. Most robots, however, have single-actuator mechanism for each joint, where the tasks are performed with high stiffness. High stiffness causes undesired problems to the environment and robots. This study proposes redundant actuator mechanism as an alternative idea to cope with these problems. In this paper, Double-Actuator Unit (DAU) is implemented at each joint for applications of multi-link manipulators. The DAU is composed of two motors: the positioning actuator and the stiffness modulator, which enables independent control of positioning and compliance. A three-link manipulator with DAUs enables adaptive control of RCC. By modulating the joint stiffness of the manipulator and controlling the position of RCC, we can significantly reduce contact force during assembly tasks and surgical procedures.

  • PDF

Mathematical Expression of the Toric Cornea using Corneal Topography Measurements (각막지형도(topography) 각막곡률로부터 토릭 각막형상의 수식화)

  • Kim, Dae Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.4
    • /
    • pp.439-444
    • /
    • 2011
  • Purpose: To represent the shape of toric corea in the elliptical function for the determination of curvature distribution and lacrimal thickness between cornea and contact lens when the lens is fitted. Methods: Topography measurements of corneal curvature and curvature equation derived from the assumed elliptical function were evaluated using the Excel program which included the necessary equation derived. Results: Mathematical expressions for the cornea whose ribbon shaped-topography image, in which the center does not coincide with the corneal apex, can be determined. Conclusions: For the application where the higher accuracy on the cornea is not required, such as higher order aberration, the cornea cal be expressed in the simple elliptical function.

Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage (작은 충돌손상을 가진 보강판의 최종강도 해석)

  • Lee, Tak-Kee;Rim, Chae-Whan
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.34-37
    • /
    • 2007
  • The safety of ships is one of the most important concerns in terms of the environment and human life. A ship in bad condition is likely to be subject to accidents, such as collision and grounding. When a ship has minor collision damages in the form of circle or ellipse, its ultimate strength will be reduced. It is important to evaluate the reduction ratio of a ship's ultimate strength that results from damages. The strength reduction of a plate with a cutout in the form of hole has been treated by many researchers. A closed-form formula for the reduction of ultimate strength of a plate, considering the effect of several forms of cutout, has been suggested. However, the structure of ships is composed of plates and stiffeners so-called stiffened plates and it is likely that plates and stiffeners will be damaged together in collisions. This paper investigates the effect of minor collision damages on the ultimate strength of a stiffened plate by using numerical analysis. For this study, the deformed shape of minor collision damages on a stiffened plate was made by using a contact algorithm and was used as the initial shape for ultimate stress analysis. Then, a series of nonlinear FE analyses was conducted to investigate the reduction effects on the ultimate strength of the stiffened plate. The boundary conditions were simply supported at all boundaries, and the tripping of stiffener was neglected. The results are presented in the form of reduction ratio between the ultimate strength of an original, intact stiffened plate and that of a damaged stiffened plate.

Ultimate Strength Analysis of Stiffened Plate with Minor Collision Damage (작은 충돌손상을 가진 보강판의 최종강도 해석)

  • Lee, Tak-Kee;Rim, Chae-Whan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.226-229
    • /
    • 2006
  • The safety of on-going ships is one of important concerns in the view of environment and human life. The ship in bad condition is likely to be subjected to accidental loads such as collision. Once she has one or several minor collision damages in the form of circle or ellipse, her ultimate strength under compression or tension load will be reduced. Here, it is important to evaluate the reduction ratio of ultimate strength due to the damage from safety point of view. The problem of strength reduction of a plate with cutout such as opening hole has been treated by many researchers. As a result, a closed-form formula on the reduction of ultimate strength of a plate considering the effect of several forms of cutout was suggested. However, the structure of ships is composed of a plate and a stiffener so-called a stiffened plate, and it is likely to be damaged at a plate and stiffeners together in collision. This paper is to investigate the effect of minor collision damage on ultimate strength of a stiffened plate by using numerical analysis. For this study, the shape of minor collision damage of a stiffened plate was made by using contact algorithm. The deformed shape was used as an initial shape for ultimate stress analysis. Then, a series of nonlinear FE analysis was conducted to investigate the reduction effects of ultimate strength of the stiffened plate. The boundary condition was applied as simply supported at all boundaries, and the tripping of stiffener among failure mode under compression loading was neglected. These results were settled in the form of reduction ratio between ultimate of original intact stiffened plate and that of damaged stiffened plate.

  • PDF

Corneal Asphericity for Myopia in Korea (한국인 근시안의 각막 비구면성)

  • Kim, Hyo-Jin;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.2
    • /
    • pp.109-114
    • /
    • 2006
  • We evaluated the contour using corneal asphericity of the myopic cornea in Korea and investigated the relationship between refractive error and other ocular dimensions in Korean myopia, including anterior chamber depth and asphericity. The monoocular asphericity value of 50 myopes with $-4.83{\pm}2.38$ D between early 20 age and early 30 age in adult was included. Cycloplegic refraction, corneal asphericity and anterior chamber depth using corneal topography were examined. The mean asphericity values were$-0.27{\pm}0.13$ and the corneas of 96.0% were prolate ellipse. Refractive error was related to asphericity and anterior chamber depth among myopes. However, asphericity only were significant difference in high and low myopia group. Corneal configuration on the contact lens fits are discussed. We think that the longitudinal study for myopia and asphericity was required.

  • PDF