• Title/Summary/Keyword: Contact Angle Image

Search Result 60, Processing Time 0.029 seconds

Development of a Novel System for Measuring Sizing Degree Based on Contact Angle(I) - Development of a Novel Principle for Automatic Measurement of Contact Angle - (접촉각 측정 원리를 이용한 새로운 사이즈도 측정기 (제1보) -자동 접촉각 측정 원리의 개발 -)

  • 이찬용;김철환;최경민;박종열;권오철
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.3
    • /
    • pp.43-52
    • /
    • 2003
  • The new principle to measure a sizing degree by a contact angle was developed using an automatic determination of the 3-end point coordinates of the water droplet on a sheet, which could diminish the operator's bias during measurement. A constant amount of water was first placed on a sample sheet by a water dispenser, and then an image of the liquid droplet was captured by a digital camera and then transmitted to a computer. The program measuring for contact angle extracted a liquid contour by Gaussian function combined with a 8-direction chain code. The Euclidean equation was applied to the binary image of the liquid contour in order to measure the diameter of the contour. Finally, the contact angle of the liquid was calculated by using the diameter and the top coordinates. In addition, a surface free energy of the sample sheet and an elapsed time taken up to the complete absorption into the sheet were simultaneously measured with the contact angle.

Development of Measurement System for Contact Angle and Evaporation Characteristics of a Micro-droplet on a Substrate (미소 액적의 접촉각 및 건조 특성 측정 시스템 개발)

  • Kwon, Kye-Si;An, Seung-Hyun;Jang, Min Hyuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.4
    • /
    • pp.414-420
    • /
    • 2013
  • We developed inkjet based measurement system for micro-droplet behavior on a substrate. By using the inkjet dispenser, a droplet, which is as small as few pico-liter in volume, can be jetted and the amount can be controlled. After jetting, the droplet image on the substrate is acquired from side view camera. Then, droplet profile is extracted to measure droplet volume, contact angle and evaporation characteristics. Also top view image of the droplet is acquired for better understanding of droplet shape. The previous contact angle measurement method has limitations since it mainly measures the ratio of height and contact diameter of droplet on a substrate. Unlike previous measurement system, our proposed method has advantages because various behavior of droplet on substrate can be effectively analyzed by extracting the droplet profile.

Measurements of Flow Meniscus Movement in a Micro Capillary Tube (마이크로 원형 모세관에서 계면 이동 현상의 측정)

  • Lee, Sukjong;Sung, Jaeyong;Lee, Myeong Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • In this paper, a high-speed imaging and an image processing technique have been applied to detect the position of a meniscus as a function of time in the micro capillary flows. Two fluids with low and high viscosities, ethylene glycol and glycerin, were dropped into the entrance well of a circular capillary tube. The filling times of the meniscus in both cases of ethylene glycol and glycerin were compared with the theoretical models - Washburn model and its modified model based on Newman's dynamic contact angle equation. To evaluate the model coefficients of Newman's dynamic contact angle, time-varying contact angles under the capillary flows were measured using an image processing technique. By considering the dynamic contact angle, the estimated filling time from the modified Washburn model agrees well with the experimental data. Especially, for the lower-viscosity fluid, the consideration of dynamic contact angle is more significant than for the higher-viscosity fluid.

Development of Hydrophilic Performance Measurement System for Anti-Condensation Using Computer Image (컴퓨터 영상을 이용한 오염방지 친수성능 측정 시스템 개발)

  • Ahn, Byung-Tae;Cho, Sung-Ho;Choi, Sun;Kim, Eun-Kuk;Park, Sang-Soo;Hwang, Heon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.4
    • /
    • pp.257-261
    • /
    • 2010
  • Surface energy is the principal factor of anti-condensation. High surface energy appears hydrophilic itself and low surface energy represents hydrophobic itself. The contact angle is widely being used for measurement of surface energy of materials, evaluation of coating performances, measurement of wettability, and so on. However, the existing contact angle measuring system is so expensive for purchasing and complicated, so it takes a lot of time and money to use. This study was conducted to develop the algorithm for evaluating hydrophilic performance through measuring the contact angle of water droplet automatically, and fabricate relatively simple measuring system using a low-cost monochrome camera and image processing. A constant amount of water was firstly allocated on a slide by a micropipette, and then the image of water droplet was captured by monochrome digital camera and sent to a computer. The image was binarized and then reduced noises by labeling. Finally, the contact angle of water droplet was computed by using three points (left, right, and top coordinates), simple linear mathematics, and trigonometric function. The experimental results demonstrated the accuracy and reproducibility of the developed system showing less deviations and deviation ratio.

Measurement of Dynamic Contact Angle of Yarn for Evaluation of Fabric Comfort Performance

  • Hong, Cheol-Jae
    • Science of Emotion and Sensibility
    • /
    • v.5 no.3
    • /
    • pp.67-74
    • /
    • 2002
  • Testing device was newly designed and built to measure the dynamic contact angle. The measurement was made using microscope interfaced with computerized image analysis system while the dynamic condition being controled using Instron. As specimens for the experiment, two different types of fibers, i.e., hydrophilic and hydrophobic, were prepared. In case of hydrophilic fiber, the increase of twist level gave the increase of contact angle. However, in hydrophobic yarn the increase of twist level gave the decrease of contact angle. When saline was used as a telling liquid, the increase of the concentration gave the increase of contact angle. The results rationalized clearly on the basis of known concepts could be used in designing fabric structure for the improvement of comport performance.

  • PDF

Determination of Surface Energy by Means of Home-Made Goniometer and Image Analyzing Software for Contact Angle Measurement (수제 접촉각 측정기와 영상 분석 프로그램을 이용한 표면에너지의 측정)

  • Cho, Seo-Rin;Cho, Han-Gook
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.432-438
    • /
    • 2013
  • We report a contact angle goniometer that can be easily assembled and used in high school and general chemistry experiments. It consists of an LED flash, a sample stand, and a camera fixed on an optical bread board, and the sample area is covered to block light from outside with a box with holes on both sides. ImageJ, free image analyzing software and a JAVA plugin (Drop_analysis) were used to determine the contact angle of liquid drop resting on solid surface. The contact angles of various liquids were successfully measured on various surfaces. The solid surface energies have also been determined using the Owen-Wendt method from the contact angles of $H_2O$ and $CH_2I_2$. The results reasonably agree with the previously reported values, showing the surface characteristics and modification as well as the dispersive and polar contributions. These contact angle goniometer and method for determination of the contact angle and surface energy can be applied to observation of various surface properties including wettability, hydrophilicity, and water repelling. Students can learn how the surface properties are related to the intermolecular interactions and gain experience about the equilibrium between the related forces, optics, and mathematical derivations.

Droplet Evaporation on Surf aces of Various Wettabilities (다양한 습윤성 표면 위에서의 액적 증발)

  • Song, Hyun-Soo;Lee, Yong-Ky;Jin, Song-Wan;Kim, Ho-Young;Yoo, Jung-Yul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.662-665
    • /
    • 2008
  • We experimentally investigate the evaporation characteristics of water droplet on surfaces of various wettabilities in the range of contact angle from 30$^{circ}$ to 150$^{circ}$. When a liquid droplet on a solid surface evaporates, the contact angle generally decreases with time and the evaporation rate varies with the droplet geometry such as the contact angle and the radius of curvature. Experimental data on the contact angle as a function of the droplet volume obtained by digital image analysis techniques cannot be explained by the existing theories. By measuring the temporal evolutions of the droplet radius and contact angle, we find the qualitative difference between the evaporation patterns on the hydrophilic surfaces where the contact radius remains constant initially and those on the superhydrophobic surfaces where the contact angle remains constant. Also, the evaporation rate is observed to depend on the surface material although the currently available models assume that the rate is solely determined by the droplet geometry. Despite the fact that the theory to explain this dependence on the surface remains to be pursued by the future work, we give the empirical relations that can be used to predict the droplet volume evolution for each surface. It is expected that the present study will contribute to interpreting the effect of droplet geometry on the evaporation.

  • PDF

Automatic Test Method of Sizing Degree by Analysis of Liquid Penetration and its Surface Behavior (액체 침투 특성과 표면 거동 분석을 이용한 사이즈도 자동측정법)

  • Lee, Ji-Young;Kim, Gyung-Chul;Kim, Chul-Hwan;Sheikh, M.I.;Park, Hyun-Jin;Kim, Sung-Ho;Sim, Sung-Woong;Cho, Hu-Seung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.2
    • /
    • pp.18-28
    • /
    • 2012
  • This study was to develop a novel automatic system for measuring St$\ddot{o}$ckigt sizing degree and contact angle at a time. The conventional methods to measure sizing degree had serious problems in obtaining significant differences according to different dosages of a sizing agent, and moreover they disclosed unique limitation due to liquid types used and tester's subjectivity. However, the newly developed system could get reproducible results through total automation of all procedures including liquid dropping, image acquisition and measurement of both St$\ddot{o}$ckigt sizing degree and contact angle. For the St$\ddot{o}$ckigt sizing test, the automatic system could measure sizing degree with more definite differences according to different dosage of AKD, compared to the conventional method. For the contact angle test, the automatic system showed a similar trend to the conventional method but had smaller contact angles due to distortion of an image focus by a sheet curl than the conventional testing machine. The problem from the image out of focus due to specimen curl will be overcome with adopting a new specimen holder for the future system.

A Contact Angle Measurement Method using Canny Edge Detect Algorithm (캐니 에지 검출 알고리즘을 이용한 접촉각 측정 기법)

  • Yoon, Yeo-Been;Song, Jeo;Jeon, Jin-Hwan;Lee, Sang-Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.01a
    • /
    • pp.251-252
    • /
    • 2016
  • 접촉각을 이용한 표면에너지 측정방법은 부품소재분야를 비롯한 폴리머 화학제품 등에서 널리 사용되고 있다. 그중 측정할 대상의 고체 표면에 액체 방울을 떨어뜨리고 측면 접점 방향에 대한 영상을 촬영하여 고체 표면과 액체 방울이 이루고 있는 각도를 측정하는 방식을 가장 많이 사용하고 있다. 본 논문에서는 기존 접촉각 측정기의 배경과 액체 방울 사이의 명암 차를 이용하여 경계선을 찾는 Sessile-drop 영상처리 기법을 보완 및 개선하기 위하여 캐니 에지 검출 알고리즘을 적용하였다.

  • PDF

Study of biofouling in Korea offshore wind farms (국내 해상풍력발전단지에서의 바이오파울링에 대한 연구)

  • Yoon Seok Chae;Ho Min Kim; Ji Hyung Kim;Sung Hoon Lee
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.43-49
    • /
    • 2023
  • We have studied biofouling in Korea's offshore wind farms by using image analysis through monitoring and surface energy analysis. To observe the biofouling characteristics, samples were fabricated using Micron extra 2 and PropOne, which have a self-polishing property, and Hempathane HS 55610, which is used in substructure coatings. The manufactured samples were installed at the bottom of a ladder in a substructure, and monitored for 10 months. The most biofouling occurred in the sample without the self-polishing property, and algae, barnacles and corallinales were observed. The surface energy analysis used the Owens-Wendt-Rabel and Kaelble (OWRK) model, which uses the contact angles of two standard fluids. As a result of calculating the surface energy using contact angle measurement, the sample without the self-polishing property showed the highest value. This result was consistent with the biofouling incidence observed through monitoring.