• Title/Summary/Keyword: Consumed-Power

Search Result 383, Processing Time 0.035 seconds

Experimental Characteristic Analysis of Induction Watthour Meter by Input Source with Harmonics (고조파 함유전원에 의한 유도형 적산전력량계의 실험적 특성해석)

  • Jang, Seok-Myeong;Lee, Sung-Ho;Park, Young-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.58-60
    • /
    • 1998
  • The precise measurement of consumed power during the given time is very important in the energy management aspect. Up to days, induction watthour meter has been designed for use in the alternating circuits in which the voltage and current are essentially sinusoidal. The use of switching elements in power system causes the current or voltage involving harmonics. Therefore the registration error is caused by harmonics in the equipment for measuring power. This paper presents the registration error of the induction watthour meter in the presence of harmonic distortion. The accuracy of a watthour meter on loads in which the input source is not sinusoidal is investigated. And the effects of individual harmonic are reported by experiment.

  • PDF

Relay node selection algorithm consuming minimum power of MIMO integrated MANET

  • Chowdhuri, Swati;Banerjee, Pranab;Chaudhuri, Sheli Sinha
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.191-200
    • /
    • 2018
  • Establishment of an efficient routing technique in multiple-input-multiple-output (MIMO) based mobile ad hoc network (MANET) is a new challenge in wireless communication system to communicate in a complex terrain where permanent infrastructure network implementation is not possible. Due to limited power of mobile nodes, a minimum power consumed routing (MPCR) algorithm is developed which is an integration of cooperative transmission process. This algorithm select relay node and support short distance communication. The performance analysis of proposed routing algorithm increased signal to noise interference ratio (SNIR) resulting effect of cooperative transmission. Finally performance analysis of the proposed algorithm is verified with simulated result.

The Effect of Folding Wing on Aerodynamics and Power Consumption of a Flapping Wing

  • Lee, Seunghee;Han, Cheolheui
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.26-30
    • /
    • 2016
  • Experimental study on the unsteady aerodynamics analysis and power consumption of a folding wing is accomplished using a wind tunnel testing. A folding wing model is fabricated and actuated using servo motors. The flapping wing consists of an inboard main wing and an outboard folding wing. The aerodynamic forces and consumed powers of the flapping wing are measured by changing the flapping and folding wings inside a low-speed wind tunnel. In order to calculate the aerodynamic forces, the measured forces are modified using static test data. It was found that the effect of the folding wing on the flapping wing's total lift is small but the effect of the folding wing on the total thrust is larger than the main wing. The folding motion requires the extra use of the servo motor. Thus, the amount of the energy consumption increases when both the wings are actuated together. As the flight speed increases, the power consumption of the folding wing decreases which results in energy saving.

DC-Voltage Regulation for Solar-Variable Speed Hybrid System

  • Niyitegeka, Gedeon;Lee, Kyungkyu;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.123-124
    • /
    • 2015
  • Recently interest on DC systems has been grown up extensively for more efficient connection with renewable energy. During the operation, there happens DC_link voltage variations. This paper focuses on the DC voltage stabilization applied in stand-alone DC microgrid to improve the system stability by keeping the voltage within limits. Batteries and a variable speed diesel generator cover the shortage of power after all available renewable energy is consumed. Load shedding or power generation reduction should automatically takes place if the maximum tolerable voltage variation is exceeded. PSIM based simulation results are presented to evaluate the performance of the proposed control measures.

  • PDF

A New Scan Partition Scheme for Low-Power Embedded Systems

  • Kim, Hong-Sik;Kim, Cheong-Ghil;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.412-420
    • /
    • 2008
  • A new scan partition architecture to reduce both the average and peak power dissipation during scan testing is proposed for low-power embedded systems. In scan-based testing, due to the extremely high switching activity during the scan shift operation, the power consumption increases considerably. In addition, the reduced correlation between consecutive test patterns may increase the power consumed during the capture cycle. In the proposed architecture, only a subset of scan cells is loaded with test stimulus and captured with test responses by freezing the remaining scan cells according to the spectrum of unspecified bits in the test cubes. To optimize the proposed process, a novel graph-based heuristic to partition the scan chain into several segments and a technique to increase the number of don't cares in the given test set have been developed. Experimental results on large ISCAS89 benchmark circuits show that the proposed technique, compared to the traditional full scan scheme, can reduce both the average switching activities and the average peak switching activities by 92.37% and 41.21%, respectively.

  • PDF

DC-Voltage Regulation for Solar-Variable Speed Hybrid System (태양광 기반의 가변속 하이브리드 시스템을 위한 직류 전압 제어)

  • Niyitegeka, Gedeon;Lee, Kyungkyu;Choi, Jaeho;Song, Yujin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2016
  • Recently, the interest in DC systems to achieve more efficient connection with renewable energy sources, energy storage systems, and DC loads has been growing extensively. DC systems are more advantageous than AC systems because of their low conversion losses. However, the DC-link voltage is variable during operation because of different random effects. This study focuses on DC voltage stabilization applied in stand-alone DC microgrids by means of voltage ranges, power management, and coordination scheme. The quality and stability of the entire system are improved by keeping the voltage within acceptable limits. In terms of optimized control, the maximum power should be tracked from renewable resources during different operating modes of the system. The ESS and VSDG cover the power shortage after all available renewable energy is consumed. Keeping the state of charge of the ESS within the allowed bands is the key role of the control system. Load shedding or power generation curtailment should automatically occur if the maximum tolerable voltage variation is exceeded. PSIM-based simulation results are presented to evaluate the performance of the proposed control measures.

A Power Aware QoS Routing in Multimedia Ad-hoc Networks (멀티미디어 Ad-hoc 네트워크에서의 전력인지 QoS 라우팅)

  • Kim, Yoon-Do;Seo, Kyung-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.258-264
    • /
    • 2010
  • In the Ad-hoc networks, the limitation on the availability of power for operation is a significant bottleneck, given the requirements of portability, weight, and size of mobile devices. Hence, the use of routing metrics that consider the capabilities of the power sources of the network nodes contributes to the efficient utilization of energy. This paper presents a QoS routing protocol that minimize the power consumed by a packet in traversing from source node to the destination node. Results obtained of simulation show that, with our approach we can reduce the power consumption of nodes and increases the life time of the network.

Evaluating Power Consumption and Real-time Performance of Android CPU Governors (안드로이드 CPU 거버너의 전력 소비 및 실시간 성능 평가)

  • Tak, Sungwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2401-2409
    • /
    • 2016
  • Android CPU governors exploit the DVFS (Dynamic Voltage Frequency Scaling) technique. The DVFS is a power management technique where the CPU operating frequency is decreased to allow a corresponding reduction in the CPU supply voltage. The power consumed by a CPU is approximately proportional to the square of the CPU supply voltage. Therefore, lower CPU operating frequency allows the CPU supply voltage to be lowered. This helps to reduce the CPU power consumption. However, lower CPU operating frequency increases a task's execution time. Such an increase in the task's execution time makes the task's response time longer and makes the task's deadline miss occur. This finally leads to degrading the quality of service provided by the task. In this paper, we evaluated the performance of Android CPU governors in terms of the power consumption, tasks's response time and deadline miss ratio.

A Study for DC 1500V Railroad System Modeling Using EMTDC

  • Lee, Han-Sang;Lee, Chang-Mu;Lee, Han-Min;Jang, Gil-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.218-219
    • /
    • 2006
  • This paper is about modeling on 1500V DC electric railroad system. Electric railroad systems have peculiar characteristics against other electric system. The characteristics arc that the railroad systems have electric vehicle loads which are power-varying and location-varying with time. Because of this load characteristic, the electric railroad system modeling which reflects its own characteristics on EMTDC simulation could not be achieved. However, to reflect load characteristic on EMTDC, this paper suggests electric railroad system modeling by using TPS (Train Performance Simulator) that was developed in Korea Railroad Research Institute. A TPS program has various kinds of input data, such as operation condition, vehicle condition, and power system condition. By these data, TPS calculates mechanical power consumption and location, especially it decide electric power consumption on the basis of the fact that consumed electric and mechanical power are equal. Moreover, on this paper, movement of vehicle is reflected on EMTDC simulation as variation of feeder impedance. Also, an electric vehicle load is modeled as time-varying constant power load model.

  • PDF

Operation Characteristic and Harmonic Analysis of 200-MW Modulator (200-MW 모듈레이터의 동작 특성 및 고조파 해석)

  • Park, S.S.;Oh, J.S.;Cho, M.H.;NamKumg, W.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1577-1579
    • /
    • 1994
  • 200-MW pulse modulators(total 11units) for the PLS linac employ the SCR phase control circuit. It controls 3-phase AC line voltage for the high-voltage DC power supply (DCPS, maximum of 25kVDC, 4.2A) which charges the pulse forming network(PFN). The PFN delivers 400kV, 500A, ESW $7.5{\mu}s$ pulse power to the 80-MW klystron amplifier tube. The SCR regulates 3-phase AC power and feeds to the high voltage transformer. Two different types of the transformer configurations namely ${\Delta}-{\Delta}$ and ${\Delta}-Y$, are alternatively installed to 11 modulator units for the suppression of harmonic noises. RC filters and reactors are also installed. Currently, approximately 110-kW of average AC power per unit is consumed at the normal operation level of the modulator with 30pps. This paper presents the operational characteristics of the high power pulse modulator, especially the experimental results of the AC line harmonic components generated by the operation of the high power pulse modulator to suppress the switching noises from the SCR and rectifying diode arrays.

  • PDF