• Title/Summary/Keyword: Construction stability

Search Result 2,245, Processing Time 0.026 seconds

Construction Sequence Analysis for Checking Stability in High-Rise Building under Construction (초고층 건물의 시공 중 안정성 검토를 위한 시공단계해석)

  • Kim, Jae-Yo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.618-623
    • /
    • 2008
  • Due to recent trends of the atypical plan shapes and the zoning construction in high-rise buildings, the building stability under construction is arising as an important issue for design and construction plan. To ensure the stability under construction, the differential column shortening and the lateral movements with unbalanced distributions of self-weight of structure members and the load flows before completion of member connections and lateral load resisting system should be checked by construction sequence analysis. This paper presents the scheme of zone-based construction sequence analysis, to check the stability of high-rise building under construction. This scheme is applied to the construction sequence analysis for real high-rise building under construction.

  • PDF

A Study on the Effective Evaluation of Slope Berm Construction using Slope Stability Analysis Program (사면안정해석 프로그램을 이용한 사면 소단 설치의 효용성 평가에 관한 연구)

  • 이종현;이정엽;김승현;유기정;구호본
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.485-492
    • /
    • 2003
  • In this study, We peformed on the effective evaluation of slope berm construction using slope stability analysis programs. The effective evaluation of slope berm construction was performed by stability of slope and economy of construction. This time, used slope stability analysis programs are Talren97 that use Limit equilibrium method (LEM) and FLAC-SLOPE that use finite difference method (FDM), and carried out using Rocfall program to evaluate slope stability by rockfall occurrence.

  • PDF

Slope Stability Analysis for Compound slope (복합사면의 사면안정해석에 관한 연구)

  • Shin, Eun-Chul;Kim, Jin-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1279-1285
    • /
    • 2010
  • Our country has a tendency to build many structures by cutting mountainous areas due to geographical features. Among these construction done in our country, road construction take the first spot in rank. As the construction is done, fractured inclining plane is created inevitability because of the natural properties of mountainous areas. The stability of the fractured inclining planes and slope formed in the opening, which are developed at the time of construction, need to be evaluated. Also, reinforcement plans for these matters are necessary. This paper is to go through an examination on the fractured inclining surface that is developed at the time of construction, especially the composite inclining plane that consists of soil and rocks. Furthermore, evaluating the stability by performing an analysis on stereographic projection and limit equilibrium, based on the examination results. using the stability evaluations, applications were explored for reinforcement methods of construction that fits the geological characters of this inclining surface.

  • PDF

A Study on the Selection and Stability of Slings and Lugs of Mobile Cranes (이동식 크레인의 슬링.러그 선정 및 안정성 검토 연구)

  • Kim, Sun-Kuk;Seo, Jong-Min;Ho, Jong-Kwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.6
    • /
    • pp.164-174
    • /
    • 2008
  • As buildings become larger, higher and more complex in most construction sites, construction projects have to deal with transportation of more materials, labor and equipment, necessitating more use of construction equipment. Notably, in the high-rise building and plant construction projects mobile cranes are adopted more frequently among different types of construction machinery, which also results in serious industrial accidents relating to the use of crane. To reduce serious industrial accidents involving cranes, researches on its stability is in need. The research herein aims to study how to select sling and lug of mobile crane and review its stability. The research outcomes herein will make considerable contributions to selecting mobile cranes efficiently and ensuring their stability.

Sensitivity Analysis of Shear Strength Parameters($C, _{\Phi}$)and Slope Angel in Slope Stability Analysis (사면 안정해석에 적용되는 지반강도정수($C, _{\Phi}$)와 사면경사 민감도 분석)

  • Baek, Yong;Bae, Gyu-Jin;Kwon, O-Il;Jang, Su-Ho;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.179-184
    • /
    • 2005
  • Shear strength parameters obtained from filed survey are important factors in the analysis of slope stability. In this study, sensitivity analysis was performed to evaluate the effect of input parameters on the analysis of slope stability. The input parameters selected for sensitivity analysis were slope angle, cohesion, and friction angle. Monte-Carlo Simulation method was used for calculating input parameters and the factor of safety was computed by means of limit equilibrium method. A rock slope, which has failed in the field, was used for the sensitivity analysis in the analysis of slope stability. The result of analysis shows that the factor of safety of the rock slope was a little low. From partial correlation coefficient(PPC) of input parameters determined from the sensitivity analysis, slope stability was dependant on cohesion and slope angle. The effect of friction angle was lower than that of cohesion and slope angle on slope stability.

  • PDF

Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis

  • Xue, Yiguo;Li, Xin;Qiu, Daohong;Ma, Xinmin;Kong, Fanmeng;Qu, Chuanqi;Zhao, Ying
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.283-293
    • /
    • 2019
  • Evaluating the stability of the excavation face of the cross-river shield tunnel with good accuracy is considered as a nonlinear and multivariable complex issue. Understanding the stability evaluation method of the shield tunnel excavation face is vital to operate and control the shield machine during shield tunneling. Considering the instability mechanism of the excavation face of the cross-river shield and the characteristics of this engineering, seven evaluation indexes of the stability of the excavation face were selected, i.e., the over-span ratio, buried depth of the tunnel, groundwater condition, soil permeability, internal friction angle, soil cohesion and advancing speed. The weight of each evaluation index was obtained by using the analytic hierarchy process and the entropy weight method. The evaluation model of the cross-river shield construction excavation face stability is established based on the idea point method. The feasibility of the evaluation model was verified by the engineering application in a cross-river shield tunnel project in China. Results obtained via the evaluation model are in good agreement with the actual construction situation. The proposed evaluation method is demonstrated as a promising and innovative method for the stability evaluation and safety construction of the cross-river shield tunnel engineerings.

Construction Monitoring of Geotextile Tube at Young-Jin Bay and Stability Analysis by Hydraulic Model Tests (영진만 지오텍스타일 튜브의 현장 시공계측 및 수리모형시험을 통한 안정성분석)

  • 신은철;오영인;이명호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.549-556
    • /
    • 2002
  • Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(shore protection structure, detached breakwater, groins and jetty). It can also be used to isolate contaminated material from harbor, detention basin dredging, and to use this unit as dikes for reclamation work. Recently, new preliminary design criteria supported by model and prototype tests, and some stability analysis calculations have been studied. The stability analysis of geotextile tube is composed geotechnical and hydrodynamic analysis. The stability check points are sliding failure, overturning, bearing capacity failure against the wave attack. In this paper presented the construction procedure and in-situ measurement(properties of filling material, effective height variation, stress variation at geotextile tube bottom) of geotextile tube at Young-Jin Bay and stability analysis by theoretical method and hydraulic model tests

  • PDF

Stability of Construction Cost-variability Factor Rankings from Professionals' Perspective: Evidence from Dar es Salaam -Tanzania

  • Shabani, Neema;Mselle, Justine;Sanga, Samwel Alananga;Kanuti, Arbogasti Isidori
    • Journal of Construction Engineering and Project Management
    • /
    • v.8 no.2
    • /
    • pp.17-33
    • /
    • 2018
  • This study investigates the stability of professionals' cost variability factor-rankings across different levels of cost-variability and response scenarios. Descriptive statistics are used to examine the stability of factor-ranking for 20 cost variability factors and a Multinomial Logistic (MNL) regression model was implemented to examine the stability of cost variability factors across three cost variability levels. The finding on the descriptive statistics indicated that professionals' factors-rankings are stable only for external factors. The MNL regression results on factor-stability suggested that 8 out of the 20 evaluated factors were unstable determinant of lower cost variability levels. These factors are "risk associated with the project", "personal bias and poor professionalism of the estimators", "limited time available to complete the project", "lack of skills and experience by estimator" "geographical location of projects", "incomplete & rush designs for estimate", "unforeseen or unexpected site constraints", "high class bidders for the contractors". Similarly lack of experience and large size projects were observed to be unstable as well. These observations suggest that professionals' view on pre-tender cost variability factor-ranking yields unstable factor rankings hence should not be relied upon as the only mechanisms to mitigate cost related risks in construction projects.

Sensitivity Analysis of Input Parameters in Slope Stability Analysis (사면 안정해석에 적용되는 입력 인자들의 민감도 분석)

  • Baek Yong;Bae Gyu-Jin;Kwon O-Il;Chang Soo-Ho;Koo Ho-Bon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.75-82
    • /
    • 2005
  • Shear strength parameters obtained from field tests are important factors in the analysis of slope stability. In this paper, sensitivity analysis was performed to evaluate the effect of input parameters on the analysis of slope stability. The input parameters selected for sensitivity analysis were slope angle, cohesion, and friction angle. Monte-Carlo Simulation method was to estimate input parameters for sensitivity analysis in slope stability, and the limit equilibrium method was used to calculate the factor of safety of slope stability. A rock slope, failed in the field, was used for the sensitivity analysis of input parameters in the analysis of slope stability. The result of analysis shows that the factor of safety of the rock slope was a little low. From partial correlation coefficient (PCC) of input parameters from the sensitivity analysis, slope stability was dependant mainly on cohesion and slope angle. The effect of friction angle was smaller than those of cohesion and slope angle on slope stability.

The stability analysis on large sectional tunnel station considering construction steps (시공단계를 고려한 대단면 정거장 터널 안정성 해석)

  • Kang, Eun-Gu;Kim, Yang-Woon;Ahn, Kyeong-Cheol;Han, Myeong-Sik
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1062-1068
    • /
    • 2009
  • Urban construction has numerous difficulties due to ground weakness and various complaints from third party, so it is not economically efficient and constructability is not favorable. Therefore, underground, which has good ground conditions, was used for construction field and facilities such as stations, and they are scaled up to enhance accommodation of facility limitation and function of stations. Large section tunnel station construction has numerous risk factors such as work boundary of excavation equipment, a relaxation of stress concentration, a safety plan of tunnel stability, and so on. Therefore, by using large section tunnel station stability analysis considering construction step, we expect to analyze the latent problem during construction, and to stabilize a future project plan of a large section structure design by using an auxiliary method and a support design.

  • PDF