• Title/Summary/Keyword: Construction applicability

Search Result 1,289, Processing Time 0.024 seconds

Numerical Study on the Effects of Air Decking in Half Charge Blasting Using AUTODYN (AUTODYN을 이용한 하프장전 발파공법의 에어데크 효과에 대한 수치해석적 연구)

  • Baluch, Khaqan;Kim, Jung-Kyu;Kim, Seung-Jun;Jin, Guochen;Jung, Seung-Won;Yang, Hyung-Sik;Kim, Nam-Soo;Kim, Jong-Gwan
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • This numerical study was intended to evaluate the applicability of the half charge blasting to mining and tunnelling. The half charge blasting is a method that two separate rounds are sequentially blasted for the rock burdens in which long blast holes have already been drilled at one operation. The aim of the method is to decrease the construction cost and period in mining and tunnelling projects as well as to increase the blasting efficiency. Several numerical analyses were conducted by using the Euler-Lagrange solver on ANSYS AUTODYN to identify the effects of the suggested method on the blasting results in underground excavations. The overall performance of the suggested method was also compared to an ordinary blasting method. The analysis model was comprised of the Eulerian parts (explosive, air, and stemming materials) and the Lagrangian parts (rock material). As a result, it was found that, owing to the air decks formed in the bottom parts of the long blast holes, the first round of the suggested method presented a higher shock pressure and particle velocities in the vicinity of the blast holes compared to the ordinary blasting method.

Numerical Simulation on Control of Tsunami by Resonator (I) (for Imwon and Mukho ports) (공진장치에 의한 지진해일파의 제어에 관한 수치시뮬레이션(I) (임원항과 묵호항에 대해))

  • Lee, Kwang-Ho;Jeon, Jong-Hyeok;Kim, Do-Sam;Lee, Yun-Du
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.481-495
    • /
    • 2020
  • After the resonator on the basis of the wave-filter theory was designed to control the waves with a specific frequency range surging into the harbor, the several case with the use of resonator have been reported in some part of sea, including the port of Long Beach, USA, and yacht harbor at Rome, Italy in order to control the long-period wave motion from the vessels. Recently, the utility and applicability of the resonator has been sufficiently verified in respect of the control of tsunami approximated as the solitary wave and/or the super long-period waves. However, the case with the application of tsunami in the real sea have not been reported yet. In this research, the respective case with the use of existing resonator at the port of Mukho and Imwon located in the eastern coast of South Korea were studied by using the numerical analysis through the COMCOT model adapting the reduction rate of 1983 Central East Sea tsunami and 1993 Hokkaido Southwest off tsunami. Consequently, the effectiveness of resonator against tsunami in the real sea was confirmed through the reduction rate of maximum 40~50% at the port of Mukho, and maximum 21% at the port of Imwom, respectively. In addition, it was concluded that it is necessary to study about the various case with application of different shape, arrangement, and size of resonator in order to design the optimal resonator considering the site condition.

Structural Analysis of Multi-Functional Fishway in Seomoon Weir (서문보의 다기능 어도의 구조해석)

  • Lee, Young Jae;Lee, Jung Shin;Jang, Hyung Kyu
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.308-319
    • /
    • 2020
  • In this study, the field applicability of the recently constructed multifunctional fishway in Seomunbo, Yeongcheon-si, and Gyeongsangbuk-do were examined. The analysis variables were R/C slab (S1) and R/C+S/C slab (S2), the underground passage standard areas (width × length) were 1.4 m × 0.2 m, 1.4 m × 0.3 m, and 1.4 m × 0.6 m, and the flow velocities were 0.8, 1.2, and 1.6 m/s. As a result of the analysis, the safety of the design of Seomunbo was evaluated. The analysis showed compared to the Seomoon Weir fishway, the maximum stress of S2 decreased by 24 - 32%, the bending moment of the underground passage decreased by 16 - 33%, the maximum stress of the sidewall decreased by 20 - 36%. In addition, the bending moment of the upper slab decreased by 17 - 33%, the maximum stress of the upper slab decreased by 9 - 28%, and the bending moment decreased by 19 - 33%. Complementation was required in the following percentages: 18% and 14% for the maximum stress and bending moment of the underground passage, respectively, 15% and 17% for the maximum sidewall stress and bending moment, respectively, and 11% and 16% for the upper slab maximum stress and bending moment, respectively. The results showed that S2 was superior to that of the Seomoon Weir fishway, and the underground passage size of 1.4 m × 0.3 m was superior to those of 1.4 m × 0.2 m and 1.4 m × 0.6 m, and R/C+S/C slab was superior to that of R/C slab. The findings are expected to be useful for constructing and designing the multifunctional fishway.

A Study on the Evaluation of Expanded Metal Characteristics for Application Rockfall Facilities (낙석방지시설 적용을 위한 팽창메탈의 특성 연구)

  • Lee, Jong-In;Jung, Chun-Gyo;Kim, Sung-Ho;Hwang, Yeong-Cheol;Lee, Seung-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.13-20
    • /
    • 2011
  • There are many mountains in Korean Peninsula, and those used for the construction of roads and railways sectors are forming slopes. Slope collapse occurs with falling rocks and landslide because of the relaxation of the thawing rocks. The heavy rain in summer can also significantly contribute to the process, and abnormal climate change is much more influential than before. Therefore, rockfall-related accidents in rainy season are easily accessible in media every year. There has been a lot of research on application of strengthening compensation of the sections in order to minimize casualties and property damage. Rockfall Protection Net, however, has not been focused on much in the field yet. This study highlights the need of Rockfall Protection Net, since it can segregate the falling rocks inside the net relatively safely. Although there has been a little doubt about the effectiveness of rockfall protection facilities, it is obvious that relevant studies dealing with the solidity of the net are necessary for the rockfall protection net to be capable of supporting rockfall energies. As a result, Expanded metal strength is much more durable compared to the PVC coating net, and it is regarded as an excellent alternative material for the Rockfall Protection Net. In this study, the applicability of Expanded Metal as the alternative of Rockfall Protection Net is verified experimentally.

Feasibility of Synchronous Videoconferencing Interactive Singing Program for Children With Autism Spectrum Disorder During COVID-19 (자폐스펙트럼장애 아동 대상 실시간 비대면 상호적 노래부르기 프로그램 실행 가능성: COVID-19에 따른 새로운 접근)

  • Yoo, Ga Eul;Im, Ju Yeon;Ha, Eun Jin
    • Journal of Music and Human Behavior
    • /
    • v.18 no.1
    • /
    • pp.29-62
    • /
    • 2021
  • This study aimed to investigate the feasibility of an interactive singing-based synchronous videoconferencing program for children with autism spectrum disorder (ASD). This study was conducted in four stages: analysis of interactive singing tasks in the literature for children with ASD, examination of differences in perception of sounds transmitted via synchronous videoconferencing platform depending on the type of singing tasks and accompaniment, construction of singing-based synchronous videoconferencing program and determination of its validity, and implementation of the constructed program with three children with ASD and confirmation of its feasibility. The results showed that different types of singing tasks and accompaniment affected perception of sounds transmitted online, which highlights the importance of considering such effects when designing synchronous videoconferencing music therapy programs. Also, increases in program engagement and singing behaviors were observed for all three participants, and their caregivers reported high levels of satisfaction with the program. The findings support the applicability of this intervention as a tele-music alternative during the COVID-19 pandemic. Clinical implications and suggestions are discussed.

Analysis of Applicability of the Detention in Trunk Sewer for Reducing Urban Inundation (도시 내수침수 저감을 위한 간선저류지 적용성 분석)

  • Lee, Sung Ho;Kim, Jung Soo;Kim, Seo Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.44-53
    • /
    • 2021
  • The flood prevention capacity of drainage facilities in urban areas has weakened because of the increase in impervious surface areas downtown owing to rapid urbanization as well as localized heavy rains caused by climate change. Detention can be installed in trunk sewers and linked to existing drainage facilities for the efficient drainage of runoff in various urban areas with increasing stormwater discharge and changing runoff patterns. In this study, the concept of detention in trunk sewers, which are storage facilities linked to existing sewer pipes, was applied. By selecting a virtual watershed with a different watershed shape, the relationship between the characteristic factors of detention in the trunk sewer and the design parameters was analyzed. The effect of reducing stormwater runoff according to the installation location and capacity of the reservoir was examined. The relationship between the installation location and the capacity of the detention trunk sewer in the Dowon district of the city of Yeosu, South Korea was verified. The effects of the existing water runoff reduction facility and the detention trunk sewer were also compared and analyzed. As a result of analyzing the effects of reducing internal inundation, it was found that the inundation area decreased by approximately 66.5% depending on the installation location of the detention trunk sewer. The detention trunk sewer proposed in this paper could effectively reduce internal inundation in urban areas.

A Study on Librarians' Awareness of Construction of Libraries Based on Smart-Digital Environment (스마트디지털 환경 기반 도서관 구축에 관한 사서 인식 연구)

  • Kang, Pil Soo;Noh, Younghee;Kim, Yoon Jeong
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.32 no.1
    • /
    • pp.5-33
    • /
    • 2021
  • This Study seeks for a plan for promotion of smartification of digital services for improving convenience in use and user services of public libraries in smart digital environment. Thus, in this Study, a survey on awareness of a plan for revitalization of digital data and smart libraries has been conducted for the persons in charge of digital data and librarians from public libraries. The result of this Survey are as follows: first, the introduction of smart libraries was effective by first implementing them in small and medium-sized cities with high interest in in information technology, and spreading them to public libraries in metropolitan cities and special autonomous cities; second, it is analyzed that the essential factor of success in introduction of smart libraries is the contents free from the terminals and the upgrade of computer equipment of users available for the use of these services. Terminals are to be individually utilized by smartphone users but it is necessary for upgrade and introduction of 5G which can secure the mobility of users including open type Wi-Fi; third, it is discovered that the information technology the applicability of which is expected to be easy while introducing smart libraries is RFID, which has been already generalized, and bigtata technology. The introduction of IoT technology in which the stakeholders of public libraries in metropolitan cities and special self-governing cities must be considered first.

Study on the Applicability of Muography Exploration Technology in Underground Space Development (지하공간개발에서 뮤오그래피 탐사기술의 적용성에 관한 연구)

  • Seo, Seunghwan;Lim, Hyunsung;Ko, Younghun;Kwak, Kiseok;Chung, Moonkyung
    • Explosives and Blasting
    • /
    • v.39 no.4
    • /
    • pp.22-33
    • /
    • 2021
  • Recently, the frequent occurrence of ground subsidence in urban areas has caused increasing anxiety in residents and incurred significant social costs. Among the causes of ground subsidence, the rupture of old water and sewer pipes not only halts the operation of the buried pipes, but also leads to ground and water pollution problems. However, because most pipes are buried after construction and cannot be seen with the naked eye, the importance of maintenance has underestimated compared to other structures. In recent years, integrated physical exploration has been applied to the maintenance of underground pipes and structures. Currently, to investigate the internal conditions and vulnerable portions of the ground, consolidated physical surveys are executed. Consolidated physical surveys are analysis techniques that obtain various material data and add existing data using multiple physical surveys. Generally, in geotechnical engineering, consolidated physical surveys including electrical and surface wave surveys are adopted. However, it is difficult to investigate time-based changes in under ground using these surveys. In contrast, surveys using cosmic-ray muons have been used to scan the inner parts of nuclear reactors with penetration technology. Surveys using muons enable real-time observation without the influence of vibration or electricity. Such surveys have great potential for available technology because of their ability to investigate density distributions without requiring as much labor. In this paper, survey technologies using cosmic ray muons are introduced, and the possibilities of applying such technologies as new physical survey technologies for underground structures are suggested.

IoT-Based Device Utilization Technology for Big Data Collection in Foundry (주물공장의 빅데이터 수집을 위한 IoT 기반 디바이스 활용 기술)

  • Kim, Moon-Jo;Kim, DongEung
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.550-557
    • /
    • 2021
  • With the advent of the fourth industrial revolution, the interest in the internet of things (IoT) in manufacturing is growing, even at foundries. There are several types of process data that can be automatically collected at a foundry, but considerable amounts of process data are still managed based on handwriting for reasons such as the limited functions of outdated production facilities and process design based on operator know-how. In particular, despite recognizing the importance of converting process data into big data, many companies have difficulty adopting these steps willingly due to the burden of system construction costs. In this study, the field applicability of IoT-based devices was examined by manufacturing devices and applying them directly to the site of a centrifugal foundry. For the centrifugal casting process, the temperature and humidity of the working site, the molten metal temperature, and mold rotation speed were selected as process parameters to be collected. The sensors were selected in consideration of the detailed product specifications and cost required for each process parameter, and the circuit was configured using a NodeMCU board capable of wireless communication for IoT-based devices. After designing the circuit, PCB boards were prepared for each parameter, and each device was installed on site considering the working environment. After the on-site installation process, it was confirmed that the level of satisfaction with the safety of the workers and the efficiency of process management increased. Also, it is expected that it will be possible to link process data and quality data in the future, if process parameters are continuously collected. The IoT-based device designed in this study has adequate reliability at a low cast, meaning that the application of this technique can be considered as a cornerstone of data collecting at foundries.

Concrete plug cutting using abrasive waterjet in the disposal research tunnel (연마재 워터젯을 활용한 처분터널 내 콘크리트 플러그 절삭)

  • Cha, Yohan;Kim, Geon Young;Hong, Eun-Soo;Jun, Hyung-Woo;Lee, Hang-Lo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.153-170
    • /
    • 2022
  • Waterjet has been comprehensively used in urban areas owing to a suitable technique for cutting concrete and rock, and low noise and vibration. Recently, the abrasive waterjet technique has been adopted and applied by the Korea Atomic Energy Research Institute to demolish concrete plugging without disturbing and damaging In-situ Demonstration of Engineered Barrier System in the disposal research tunnel. In this study, the use of abrasive waterjet in the tunnel was evaluated for practical applicability and the existing cutting model was compared with the experimental results. As a variable for waterjet cutting, multi-cutting, water flow rate, abrasive flow rate, and standoff distance were selected for the diversity of analysis. As regarding the practical application, the waterjet facilitated path selection for cutting the concrete plugging and prevented additional disturbances in the periphery. The pump's noise at idling was 64.9 dB which is satisfied with the noise regulatory standard, but it exceeded the standard at ejection to air and target concrete because the experiment was performed in the tunnel space. The experimental result showed that the error between the predicted and measured cutting volume was 12~13% for the first cut and 16% for second cut. The standoff distance had a significant influence on the cutting depth and width, and the error tended to decrease with decrement of standoff distance.