• Title/Summary/Keyword: Construction Vehicle

Search Result 870, Processing Time 0.026 seconds

Transient Characteristic Analysis on the Regenerative Braking System of Fuel-cell Electric Vehicle with Electro-Hydraulic Brake (전기유압식 브레이크를 장착한 연료전지차량의 회생제동 천이구간 특성해석)

  • Choi, Jeong-Hun;Cho, Bae-Kyoon;Park, Jin-Hyun;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Nowadays, various researches about eco-friendly vehicles such as hybrid electric vehicle, fuel cell vehicle and electric vehicle have been actively carried out. Since most of these green cars have electric motors, the regenerative energy technology can be used to improve the fuel economy and the energy efficiency of vehicles. The regenerative brake is an energy recovery mechanism which slows a vehicle by converting its kinetic energy into electric energy, which can be either used immediately or stored until needed. This technology plays a significant role in achieving the high energy usage. However, there are some technical problems for controlling the regenerative braking and the electro-hydraulic brake during switching at transient region. In this paper, the performance simulator for fuel-cell vehicle is developed and transient response characteristics of the regenerative braking system are analyzed in the various driving situations. And the hardware-in-the-loop simulation of electro-hydraulic brake is performed to validate the transient characteristics of the regenerative braking system for fuel-cell electric vehicle.

A Study of the Electric Vehicle Industry and Policy Implications (전기자동차 산업 현황 및 정책적 대응방향)

  • Chun, Hwang-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.471-473
    • /
    • 2013
  • This paper is analyzing the situation of the electric vehicle Industry and draw the policy implications to promote electric vehicle industry. Major automobile makers as GM, BMW, Nissan, Audi produce various electric vehicles. But in recent times, only few electric vehicle sold in the world. So, many automobile makers gave up the production of electric vehicles. and the fuel-cell vehicle will replace the electric vehicle as a environment car in the future. We should take the build up of eco system between vehicle makers and the small parts companies, construction of battery charging infrastructure, promotion of standardization activities, and the government's support to revive the electric vehicle industry.

  • PDF

A Parametric Study of Crash Scenario of Autonomous Vehicle and Database Construction (자율주행차 충돌시나리오 파라미터 분석과 차대차 충돌해석 DB 구성)

  • Young Myoung So;Ho Kim;Junsuk Bae
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.39-47
    • /
    • 2023
  • Research on the safety of autonomous vehicle is being conducted in various countries, including the European Union, and computer simulation techniques so called 'Virtual Tool Chain' are mainly used. As part of the crash safety study of autonomous vehicle, 25 car to car collision scenarios were provided as a result of a real accident-based accident reproduction analysis study conducted by a domestic research institution, and a vehicle crash analysis was performed using the FE car to car model of the Honda Accord. In order to analyze the results of the car to car simulation and to construct a database, major crash parameters were selected as impact speed, angle, location, and overlap, and a method of defining them in an indexed form was presented. In order to compare the crash severity of each scenario, a value obtained by integrating the resultant acceleration measured by the ACU of the vehicle was applied. The equivalent collision test mode was derived by comparing the crash severity of the regulation test mode, 30 deg rigid barrier mode, in the same way.

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

A Study on Life Prediction of Hydraulic Piston Pump (유압 피스톤 펌프의 수명 예측 연구)

  • Kim, Kyungsoo;Lee, Jihwan;Kang, Myeongcheol;Ryuh, Beomsahng
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.607-613
    • /
    • 2018
  • Hydraulic systems are widely used in the field of defense, construction machinery, agricultural machinery, and general industries, due to various advantages such as quick response speed and precision control. The defense equipments such as light rescue vehicle is operated in very harsh environments, so hydraulic components used in defense equipment are required to have very high reliability. In particular, hydraulic piston pump is very important component in a hydraulic systems, so life prediction of pump is essential. Therefore, in this study, we analyze the potential failure and the main failure mode of the hydraulic piston pump for the light rescue vehicle through the FMEA analysis, and predict the life of the pump by the accelerated life test considering the usage conditions.

A Study on Characteristics of Performance by Heavy-Duty Diesel Engine on Construction Machine with EGR Cooler System (EGR Cooler system을 장착한 건설기계용 대형디젤엔진의 성능에 관한 연구)

  • Oh, Sang-Ki;Kim, Jin-Iyul;Lee, Seung-Ho;Song, Ho-Young
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.130-135
    • /
    • 2013
  • It is a research about the change in reduction efficiency and performance resulting from installation of the EGR cooler, which is the core technology reducing NOx in response to standards been tightened of exhaust controls for off-road vehicle. It can reduce NOx by altering combustion temperature and oxygen concentration by recycling high-temperature exhaust gas. The target engine was large diesel engine for construction machine through by which we were able to verify a rate of change in output and capabilities for a heat-exchange within cooler itself depending on the existence of EGR cooler system. We have acquired a emission reduction technology for a construction machine by testing the reduction performance and rate of change in output.

Tack Coat Inspection Using Unmanned Aerial Vehicle and Deep Learning

  • da Silva, Aida;Dai, Fei;Zhu, Zhenhua
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.784-791
    • /
    • 2022
  • Tack coat is a thin layer of asphalt between the existing pavement and asphalt overlay. During construction, insufficient tack coat layering can later cause surface defects such as slippage, shoving, and rutting. This paper proposed a method for tack coat inspection improvement using an unmanned aerial vehicle (UAV) and deep learning neural network for automatic non-uniform assessment of the applied tack coat area. In this method, the drone-captured images are exploited for assessment using a combination of Mask R-CNN and Grey Level Co-occurrence Matrix (GLCM). Mask R-CNN is utilized to detect the tack coat region and segment the region of interest from the surroundings. GLCM is used to analyze the texture of the segmented region and measure the uniformity and non-uniformity of the tack coat on the existing pavements. The results of the field experiment showed both the intersection over union of Mask R-CNN and the non-uniformity measured by GLCM were promising with respect to their accuracy. The proposed method is automatic and cost-efficient, which would be of value to state Departments of Transportation for better management of their work in pavement construction and rehabilitation.

  • PDF