• Title/Summary/Keyword: Construction Techniques

Search Result 1,802, Processing Time 0.032 seconds

Safety Evaluation of Subway Tunnel Structures According to Adjacent Excavation (인접굴착공사에 따른 지하철 터널 구조물 안전성 평가)

  • Jung-Youl Choi;Dae-Hui Ahn;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.559-563
    • /
    • 2024
  • Currently, in Korea, large-scale, deep excavations are being carried out adjacent to structures due to overcrowding in urban areas. for adjacent excavations in urban areas, it is very important to ensure the safety of earth retaining structures and underground structures. accordingly, an automated measurement system is being introduced to manage the safety of subway tunnel structures. however, the utilization of automated measurement system results is very low. existing evaluation techniques rely only on the maximum value of measured data, which can overestimate abnormal behavior. accordingly, in this study, a vast amount of automated measurement data was analyzed using the Gaussian probability density function, a technique that can quantitatively evaluate. highly reliable results were derived by applying probabilistic statistical analysis methods to a vast amount of data. therefore, in this study, the safety evaluation of subway tunnel structures due to adjacent excavation work was performed using a technique that can process a large amount of data.

Active Control for Seismic Response Reduction Using Probabilistic Neural Network (지진하중을 받는 구조물의 능동제어를 위한 확률신경망 이론)

  • Kim, Doo-Kie;Lee, Jong-Jae;Chang, Seong-Kyu;Choi, In-Jung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.103-112
    • /
    • 2007
  • Recently structures become longer and higher because of the developments of new materials and construction techniques. However, such modern structures are susceptible to excessive structural vibrations, which may induce problems of serviceability and structural damages. In this paper we attempt to control structural vibration using the probabilistic neural network(PNN) and the artificial neural network(ANN) based on the training pattern that consist of only the structural state vector and the control force. The state vectors of the structure and control forces made by linear quadratic regulator(LQR) algorithm are used for training pattern of PNN and ANN. The proposed algorithm is applied for the vibration control of the three story shear building under Northridge earthquake. Control results by the proposed PNN and ANN are compared with each other.

Seismic Data Processing Using BERT-Based Pretraining: Comparison of Shotgather Arrays (BERT 기반 사전학습을 이용한 탄성파 자료처리: 송신원 모음 배열 비교)

  • Youngjae Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.3
    • /
    • pp.171-180
    • /
    • 2024
  • The processing of seismic data involves analyzing earthquake wave data to understand the internal structure and characteristics of the Earth, which requires high computational power. Recently, machine learning (ML) techniques have been introduced to address these challenges and have been utilized in various tasks such as noise reduction and velocity model construction. However, most studies have focused on specific seismic data processing tasks, limiting the full utilization of similar features and structures inherent in the datasets. In this study, we compared the efficacy of using receiver-wise time-series data ("receiver array") and synchronized receiver signals ("time array") from shotgathers for pretraining a Bidirectional Encoder Representations from Transformers (BERT) model. To this end, shotgather data generated from a synthetic model containing faults was used to perform noise reduction, velocity prediction, and fault detection tasks. In the task of random noise reduction, both the receiver and time arrays showed good performance. However, for tasks requiring the identification of spatial distributions, such as velocity estimation and fault detection, the results from the time array were superior.

Investigation of pile group response to adjacent twin tunnel excavation utilizing machine learning

  • Su-Bin Kim;Dong-Wook Oh;Hyeon-Jun Cho;Yong-Joo Lee
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.517-528
    • /
    • 2024
  • For numerous tunnelling projects implemented in urban areas due to limited space, it is crucial to take into account the interaction between the foundation, ground, and tunnel. In predicting the deformation of piled foundations and the ground during twin tunnel excavation, it is essential to consider various factors. Therefore, this study derived a prediction model for pile group settlement using machine learning to analyze the importance of various factors that determine the settlement of piled foundations during twin tunnelling. Laboratory model tests and numerical analysis were utilized as input data for machine learning. The influence of each independent variable on the prediction model was analyzed. Machine learning techniques such as data preprocessing, feature engineering, and hyperparameter tuning were used to improve the performance of the prediction model. Machine learning models, employing Random Forest (RF), eXtreme Gradient Boosting (XGB), and Light Gradient Boosting Machine (LightGBM, LGB) algorithms, demonstrate enhanced performance after hyperparameter tuning, particularly with LGB achieving an R2 of 0.9782 and RMSE value of 0.0314. The feature importance in the prediction models was analyzed and PN was the highest at 65.04% for RF, 64.81% for XGB, and PCTC (distance between the center of piles) was the highest at 31.32% for LGB. SHAP was utilized for analyzing the impact of each variable. PN (the number of piles) consistently exerted the most influence on the prediction of pile group settlement across all models. The results from both laboratory model tests and numerical analysis revealed a reduction in ground displacement with varying pillar spacing in twin tunnels. However, upon further investigation through machine learning with additional variables, it was found that the number of piles has the most significant impact on ground displacement. Nevertheless, as this study is based on laboratory model testing, further research considering real field conditions is necessary. This study contributes to a better understanding of the complex interactions inherent in twin tunnelling projects and provides a reliable tool for predicting pile group settlement in such scenarios.

Comparison of advance rate and powder factor of two- and three-free-face blasting (2, 3 자유면 발파의 굴진율 및 비장약량 비교)

  • Youngmin Yoon;Seokwon Jeon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.403-419
    • /
    • 2024
  • Advance rate significantly affects both the construction period and cost in tunnel blasting. As such, there has been persistent research dedicated to the development of innovative blasting technique aimed at enhancing the advance rate. This paper aims to provide fundamental insights into the differences in advance rate and the powder factor between two- and three-free-face blasting, laying the groundwork for the advancement of tunnel blasting techniques. Large-scale cement mortar specimens were fabricated, and blasting tests were conducted for both two- and three-free-face blasting. Experimental findings were then compared with those from numerical simulation. Notably, an increase in the number of free faces, under uniform conditions, significantly improved the advance rate while reducing the powder factor. The outcomes of this study serve as crucial groundwork for devising blasting patterns employing three-free-face blasting, characterized by improved advance rates and minimized powder factors. Consequently, the anticipated outcomes include an overall improvement in tunnel advance rates and a reduction in the number of drilling holes and the amounts of explosives.

Formative Stages of Establishing Royal Tombs Steles and Kings' Calligraphic Tombstones in Joseon Dynasty (조선시대 능비(陵碑)의 건립과 어필비(御筆碑)의 등장)

  • Hwang, Jung Yon
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.4
    • /
    • pp.20-49
    • /
    • 2009
  • This paper explores the Korean royal tombs steles such as monumental steles and tombstone marks (神道碑, 表石) that are broadly fallen into the following three periods ; the 15~16th centuries, 17th~18th centuries, and 19th century. As a result, the royal tombs steles were built, unlike the private custom, on the heirs to the King's intentions. During the 15~17th centuries the construction and reconstruction of the monumental steles took place. In the late Joseon period, monumental steles had been replaced with a number of tombstone marks were built to appeal to the king's calligraphy carved on stone for the first time. During the Great Empire Han(大韓帝國) when the Joseon state was upgraded the empire, Emperors Gojong and Sunjong devoted to honor ancestors by rebuilding royal tombstone mark. Based on these periodical trends, it would not be exaggerated that the history of establishing the royal tombs steles formed in late Joseon. The type of royal tombs monuments originated from those of the Three Kingdoms era, a shapeless form, the new stele type of the Tang Dynasty (唐碑) has influenced on the building of monuments of the Unified Silla and Buddhist honorable monuments (塔碑) of the Goryeo Dynasty. From the 15th century, successive kings have wished to express the predecessors's achievements, nevertheless, the officials opposed it because the affairs of the King legacy (國史) were all recorded, so there is no need to establish the tombs steles. Although its lack of quantity, each Heonneung and Jereung monumental steles rebuilt in 1695 and 1744 respectively, is valuable to show the royal sculpture of the late Joseon period. Since the 15th century, the construction of the royal tombs monumental steles has been interrupted, the tombstone marks (boulders) with simpler format began to be erected within the tomb precincts. The Yeoneung tombstone mark(寧陵表石), built in 1682, shows the first magnificent scale and delicate sculpture technique. Many tombstone marks were erected since the 1740s on a large scale, largely caused by King Yeongjo's announce to the honorific business for the predecessors. Thanks to King Yeongjo's such appealing effort, over 20 pieces of tombstone marks were established during his reign. The fact that his handwritten calligraphic works first carved on tombstones was a remarkable phenomenon had never been appeared before. Since the 18th century, a double-slab high above the roof(加?石) and rectangular basement of the stele have been accepted as a typical format of the tombstone marks. In front of the stele, generally seal script calligraphic works after a Tang dynasty calligrapher Li Yangbing(李陽氷)'s brushwork were engraved. In 1897 when King Gojong declared the Empire, these tombstone marks were once again produced in large amounts. Because he tried to find the legitimacy of the Empire in the history of the Joseon dynasty and its four founding fathers in creating the monuments both of the front and back sides by carving his in-person-calligraphy as a ruler representing his symbolic authority. The tombstone marks made during this period, show an abstract sculpture features with the awkward techniques, and long and slim strokes. As mentioned above, the construction of monumental steles and tombstone marks is a historical and remarkable phenonenon to reveal the royal funeral custom, sculpture techniques, and successive kings' efforts to honor the royal predecessors.

Comparing Prediction Uncertainty Analysis Techniques of SWAT Simulated Streamflow Applied to Chungju Dam Watershed (충주댐 유역의 유출량에 대한 SWAT 모형의 예측 불확실성 분석 기법 비교)

  • Joh, Hyung-Kyung;Park, Jong-Yoon;Jang, Cheol-Hee;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.861-874
    • /
    • 2012
  • To fulfill applicability of Soil and Water Assessment Tool (SWAT) model, it is important that this model passes through a careful calibration and uncertainty analysis. In recent years, many researchers have come up with various uncertainty analysis techniques for SWAT model. To determine the differences and similarities of typical techniques, we applied three uncertainty analysis procedures to Chungju Dam watershed (6,581.1 $km^2$) of South Korea included in SWAT-Calibration Uncertainty Program (SWAT-CUP): Sequential Uncertainty FItting algorithm ver.2 (SUFI2), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol). As a result, there was no significant difference in the objective function values between SUFI2 and GLUE algorithms. However, ParaSol algorithm shows the worst objective functions, and considerable divergence was also showed in 95PPU bands with each other. The p-factor and r-factor appeared from 0.02 to 0.79 and 0.03 to 0.52 differences in streamflow respectively. In general, the ParaSol algorithm showed the lowest p-factor and r-factor, SUFI2 algorithm was the highest in the p-factor and r-factor. Therefore, in the SWAT model calibration and uncertainty analysis of the automatic methods, we suggest the calibration methods considering p-factor and r-factor. The p-factor means the percentage of observations covered by 95PPU (95 Percent Prediction Uncertainty) band, and r-factor is the average thickness of the 95PPU band.

Target Word Selection Disambiguation using Untagged Text Data in English-Korean Machine Translation (영한 기계 번역에서 미가공 텍스트 데이터를 이용한 대역어 선택 중의성 해소)

  • Kim Yu-Seop;Chang Jeong-Ho
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.749-758
    • /
    • 2004
  • In this paper, we propose a new method utilizing only raw corpus without additional human effort for disambiguation of target word selection in English-Korean machine translation. We use two data-driven techniques; one is the Latent Semantic Analysis(LSA) and the other the Probabilistic Latent Semantic Analysis(PLSA). These two techniques can represent complex semantic structures in given contexts like text passages. We construct linguistic semantic knowledge by using the two techniques and use the knowledge for target word selection in English-Korean machine translation. For target word selection, we utilize a grammatical relationship stored in a dictionary. We use k- nearest neighbor learning algorithm for the resolution of data sparseness Problem in target word selection and estimate the distance between instances based on these models. In experiments, we use TREC data of AP news for construction of latent semantic space and Wail Street Journal corpus for evaluation of target word selection. Through the Latent Semantic Analysis methods, the accuracy of target word selection has improved over 10% and PLSA has showed better accuracy than LSA method. finally we have showed the relatedness between the accuracy and two important factors ; one is dimensionality of latent space and k value of k-NT learning by using correlation calculation.

Predicting the Performance of Recommender Systems through Social Network Analysis and Artificial Neural Network (사회연결망분석과 인공신경망을 이용한 추천시스템 성능 예측)

  • Cho, Yoon-Ho;Kim, In-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.159-172
    • /
    • 2010
  • The recommender system is one of the possible solutions to assist customers in finding the items they would like to purchase. To date, a variety of recommendation techniques have been developed. One of the most successful recommendation techniques is Collaborative Filtering (CF) that has been used in a number of different applications such as recommending Web pages, movies, music, articles and products. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. Broadly, there are memory-based CF algorithms, model-based CF algorithms, and hybrid CF algorithms which combine CF with content-based techniques or other recommender systems. While many researchers have focused their efforts in improving CF performance, the theoretical justification of CF algorithms is lacking. That is, we do not know many things about how CF is done. Furthermore, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting the performances of CF algorithms in advance is practically important and needed. In this study, we propose an efficient approach to predict the performance of CF. Social Network Analysis (SNA) and Artificial Neural Network (ANN) are applied to develop our prediction model. CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. SNA facilitates an exploration of the topological properties of the network structure that are implicit in data for CF recommendations. An ANN model is developed through an analysis of network topology, such as network density, inclusiveness, clustering coefficient, network centralization, and Krackhardt's efficiency. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Inclusiveness refers to the number of nodes which are included within the various connected parts of the social network. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. Krackhardt's efficiency characterizes how dense the social network is beyond that barely needed to keep the social group even indirectly connected to one another. We use these social network measures as input variables of the ANN model. As an output variable, we use the recommendation accuracy measured by F1-measure. In order to evaluate the effectiveness of the ANN model, sales transaction data from H department store, one of the well-known department stores in Korea, was used. Total 396 experimental samples were gathered, and we used 40%, 40%, and 20% of them, for training, test, and validation, respectively. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. The input variable measuring process consists of following three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used Net Miner 3 and UCINET 6.0 for SNA, and Clementine 11.1 for ANN modeling. The experiments reported that the ANN model has 92.61% estimated accuracy and 0.0049 RMSE. Thus, we can know that our prediction model helps decide whether CF is useful for a given application with certain data characteristics.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.