• Title/Summary/Keyword: Construction Sequence

검색결과 592건 처리시간 0.027초

Surface Design Using B-spline Skinning of Cross-Sectional Curves under Volume Constraint (체적등의 구속조건하에서 단면곡선들로부터 B-spline Skinning을 사용한 곡면 디자인)

  • 김형철
    • Korean Journal of Computational Design and Engineering
    • /
    • 제3권2호
    • /
    • pp.87-102
    • /
    • 1998
  • Given a sequence of cross-sectional curves, the skinning method generates a freeform surface that interpolates the given curves in that sequence. This thesis presents a construction method of a B-spline skinning surface that is fair and satisfies volume constraints. The fairness metric is based on the parametric energy functional of a surface. The degrees of freedom in surface control are closely related lo control points in the skinning direction. The algorithm fur finding a skinning surface consists of two step. In the first step, an initial fair surface is generated without volume constraints and one coordinate of each control point is fixed. In the second step, a final surface that meets all constraints is constucted by rearranging the other coordinates of each control point that defines the initial surface A variational Lagrange optimization method produces a system of nonlinear equations, which can be solved numerically. Moreover, the reparametrization of given sectional curves is important for the construction of a reasonable skinning surface. This thesis also presents an intuitive metric for reparametrization and gives some examples that are optimized with respect to that metric.

  • PDF

A Geometric Constraint Solver for Parametric Modeling

  • Jae Yeol Lee;Kwangsoo Kim
    • Korean Journal of Computational Design and Engineering
    • /
    • 제3권4호
    • /
    • pp.211-222
    • /
    • 1998
  • Parametric design is an important modeling paradigm in CAD/CAM applications, enabling efficient design modifications and variations. One of the major issues in parametric design is to develop a geometric constraint solver that can handle a large set of geometric configurations efficiently and robustly. In this appear, we propose a new approach to geometric constraint solving that employs a graph-based method to solve the ruler-and-compass constructible configurations and a numerical method to solve the ruler-and-compass non-constructible configurations, in a way that combines the advantages of both methods. The geometric constraint solving process consists of two phases: 1) planning phase and 2) execution phase. In the planning phase, a sequence of construction steps is generated by clustering the constrained geometric entities and reducing the constraint graph in sequence. in the execution phase, each construction step is evaluated to determine the geometric entities, using both approaches. By combining the advantages of the graph-based constructive approach with the universality of the numerical approach, the proposed approach can maximize the efficiency, robustness, and extensibility of geometric constraint solver.

  • PDF

TOEPLITZ SEQUENCES OF INTERMEDIATE COMPLEXITY

  • Kim, Hyoung-Keun;Park, Seung-Seol
    • Journal of the Korean Mathematical Society
    • /
    • 제48권2호
    • /
    • pp.383-395
    • /
    • 2011
  • We present two constructions of Toeplitz sequences with an intermediate complexity function by using the generalized Oxtoby sequence. In the first one, we use the blocks from the infinite sequence, which has entropy dimension $\frac{1}{2}$. The second construction provides the Toeplitz sequences which have various entropy dimensions.

Development of finite element analysis model for multi-step excavation problem (시공단계를 고려할 수 있는 유한요소 해석 모델 개발)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • 제6권4호
    • /
    • pp.326-334
    • /
    • 1996
  • In underground construction the multi-step excavation sequence is commonly adopted for the convenience of the underground work. A numerical simulation method which is capable of analyzing the effects of excavation sequence on the stability of the opening is greatly needed. In this study a two dimensional finite element code was developed based on the effective numerical algorithm for the multistep excavation. The practical applicability of the model was verified for the simplified excavation sequences.

  • PDF

Construction of a Temperature Controlled Expression Ve e tor in Saccharumy ces cerevisiae (Saccharomyces cerevisiae를 이용한 온도조절형 발현 Vector의 개발)

  • 최진옥;황용일
    • Microbiology and Biotechnology Letters
    • /
    • 제21권3호
    • /
    • pp.214-220
    • /
    • 1993
  • The mating type a of yeast, Saccharomyces cerevisiae mutant with hmla2-102 and sir3-8ts was changed to type alpha by changing the growth temperature from 25C to 35C. A temperature-sensitive expression vector system was constructed using mating factor alpha1 (Mfalpha1) gene encoding alpha factor which is expressed in the type alpha cells. Vectors with different copy numbers were constructed by joining the promoter and pre or prepro-secretion single sequence of Mfalpha1 to promoterless PHO5' gene as a reporter gene.

  • PDF

A Study on Effect of Pre-Stressing Sequences in PSC Bridge Strengthening Method Using Continuity with External Prestressing (PSC교량 보강시 긴장력 도입순서의 영향에 관한 연구)

  • 방명석
    • Journal of the Korean Society of Safety
    • /
    • 제16권4호
    • /
    • pp.123-127
    • /
    • 2001
  • Numerous PSC bridges are stregthened by the combined use of continuity of simple spans and addition of external prestressing. In this case prestressing sequences should be carefully checked due to the effect on the stress and camber of girders and slab. Various prestressing sequences were applied in this field test and measured values were analysed. This results show that preatressing sequences affact the stress and deflection of bridge members, so the prestressing sequence should be considered at the desist and construction stages of deteriorated bridges.

  • PDF

A Theory on the Construction of Binary Sequences with Ideal Atutocorrelation

  • No, Jong-Seon;Yang, Kyeong-Cheol;Chung, Ha-Bong;Song, Hong-Yeop
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.223-228
    • /
    • 1997
  • In this paper, we present a closed-form expression of binary sequences of longer period with ideal autocorrelation property in a trace representation, if a given binary sequence with ideal autocorrelation property is described using the trace function. We also enumerate the number of cyclically distinct binary sequences of a longer period with ideal autocorrelation property, which are extended from a given binary sequence with ideal autocorrelation property.

  • PDF

Experimental Research for CO2 Emission Estimation of Medium-Scale Excavator Reflecting Work Characteristics (작업 특성을 반영한 중규모 굴삭기의 CO2 배출량산정을 위한 실험적 연구)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제37권4호
    • /
    • pp.717-727
    • /
    • 2017
  • Researches on the emissions of greenhouse gases in the construction industry, which accounts for 40% of raw materials, 30% of energy consumption, and 30% of $CO_2$ emissions in the entire industry, are mainly focused on studies of LCA. However, it is assessed that $CO_2$ emissions are higher in construction sequence than in operation sequence. Also, it is considered that construction machinery using fossil fuel is a main factor causing environmental load in construction sequence. Therefore, this study analyzes the workload and engine RPM characteristics of the excavator which is the second largest number of registered construction machinery in Korea and the highest utilization rate in actual construction site. The excavator is divided into non-load states and load states where power is transmitted to the excavator. The exhaust gas is analyzed by a direct measurement method using PEMS equipment. $CO_2$ emissions are estimated by analyzing the relationship between RPM and exhaust emission characteristics according to the actual driving conditions. Additionally, we analyze the difference between $CO_2$ emissions of construction machine calculated by this study and $CO_2$ emissions calculated by using carbon emission coefficient.

Evaluation and Adjustment of Lateral Displacement of Complex-shaped RC Tall Buildings Considering the Displacement by Tilt Angle of Each Floor (층경사각에 의한 횡변위를 고려한 비정형 고층건물의 횡변위 평가/보정)

  • Kim, Yungon
    • Journal of the Korea Concrete Institute
    • /
    • 제27권5호
    • /
    • pp.551-558
    • /
    • 2015
  • Lateral displacement in the most complex-shaped tall buildings is caused by eccentric gravity loads which are induced by the difference in location between a center of mass and a center of stiffness. The lateral displacements obtained from analysis, using conventional procedures, are prone to overestimate the actual values because much of realignment efforts made during construction phase are ignored. In construction sequence analysis, the self-leveling of slab and the verticality of columns/walls could be considered at each construction stage. Moreover, the displacement compensation can be achieved by manual process such as re-centering - locating to global coordinates through surveying. Because the lateral displacement increases with the building height, it is necessary to set up adjustment plan through construction stage analysis in advance in order to result in displacements less than the allowable limits. Because analytical solution includes lots of assumptions, the pre-adjusting displacement should be reasonably controlled with considerations for the uncertainty due to these assumptions.