• Title/Summary/Keyword: Construction Robot

Search Result 316, Processing Time 0.025 seconds

On Developing The Intellingent contro System of a Robot Manupulator by Fussion of Fuzzy Logic and Neural Network (퍼지논리와 신경망 융합에 의한 로보트매니퓰레이터의 지능형제어 시스템 개발)

  • 김용호;전홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.52-64
    • /
    • 1995
  • Robot manipulator is a highly nonlinear-time varying system. Therefore, a lot of control theory has been applied to the system. Robot manipulator has two types of control; one is path planning, another is path tracking. In this paper, we select the path tracking, and for this purpose, propose the intelligent control¬ler which is combined with fuzzy logic and neural network. The fuzzy logic provides an inference morphorlogy that enables approximate human reasoning to apply to knowledge-based systems, and also provides a mathematical strength to capture the uncertainties associated with human cognitive processes like thinking and reasoning. Based on this fuzzy logic, the fuzzy logic controller(FLC) provides a means of converhng a linguistic control strategy based on expert knowledge into automahc control strategy. But the construction of rule-base for a nonlinear hme-varying system such as robot, becomes much more com¬plicated because of model uncertainty and parameter variations. To cope with these problems, a auto-tuning method of the fuzzy rule-base is required. In this paper, the GA-based Fuzzy-Neural control system combining Fuzzy-Neural control theory with the genetic algorithm(GA), that is known to be very effective in the optimization problem, will be proposed. The effectiveness of the proposed control system will be demonstrated by computer simulations using a two degree of freedom robot manipulator.

  • PDF

Development Trends of Thermal Control Design and Analysis of Robotic Arm Payload for Spacecraft (인공위성 로봇팔 탑재체의 열 제어 설계 및 해석 개발 동향 )

  • Han-Seop Shin;Hae-Dong Kim
    • Journal of Space Technology and Applications
    • /
    • v.4 no.1
    • /
    • pp.27-47
    • /
    • 2024
  • In the New space era, satellites are being developed to perform on-orbit service (OOS) missions. Various missions for orbital service include failure repair, refueling, towing, component replacement, and space construction, and in order to do so, a robot arm payload must be mounted. Unlike conventional satellite payloads, the robot arm payload is not move in a fixed state, but is a payload that must move continuously to perform the mission. It is also characterized by the need to perform the mission while being directly exposed to outer space, rather than existing inside the structure of the satellite. Due to the characteristics of these payloads, thermal design and interpretation that can be operated smoothly in an extreme space thermal environment is essential, but there are not many papers on thermal design and interpretation of the robot arm. This paper introduces and summarizes cases of thermal design and interpretation of robot arm payloads developed so far, and finally, it intends to suggest directions for thermal design and interpretation of robot arm payloads to be developed in the future.

A Conceptual Design and Feasibility Analysis of a Window Cleaning Device (유리창 청소장치의 개념 디자인 및 경제적 타당성 예측)

  • Kim, Kyoon-Tai;Jun, Young-Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.6
    • /
    • pp.537-543
    • /
    • 2020
  • The window cleaning works are manpower-dependent and are performed in an unstable posture at high altitude, so that there is a risk of falling. Therefore, there is an urgent need to improve the safety of workers. In this study, a conceptual design was proposed for the cleaning of exterior windows of a building, and the economic feasibility of the proposed conceptual model was analyzed. The proposed model is designed to avoid protrusions such as window frames, and to be able to respond even if the shapes of the upper and lower parts are different. As a result of analyzing the economic feasibility of the designed conceptual model, the benefit cost ratio was 4.48, which was significantly higher than 1. Therefore, the economic feasibility of the proposed window cleaning device is expected to be sufficient. The results analyzed in this paper will be used in the development and marketing of the window cleaning device.

A Study on the Development of an Automated Freeform Fabrication System and Construction Materials (자동화 적층 시공 시스템 및 재료 개발에 관한 연구)

  • Jeon, Kwang Hyun;Park, Min-Beom;Kang, Min-Kyung;Kim, Jung-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1665-1673
    • /
    • 2013
  • Recently, the interest and demand on free formed structure providing aesthetic value as well as functionality has been increasing. Formwork has numerous advantages such as high strength, convenience, accuracy and good quality of surface roughness. Nevertheless, it increases construction cost and period to build complex shapes. For these purpose, deposition construction systems such as Contour Crafting and Concrete Printing have been developed with active collaboration between university and industry by applying the rapid prototyping technology to the construction industry in USA and England. Since there has been no related research in Korea, the possibility of spin-off technology and its fusion cannot be expected. In this paper, design elements including mechanical system and control system related to automatic deposition construction system prototype for constructing a free curved structure without mold are described. As for an appropriate material for the system, fiber reinforced mortar was selected by experiments on compressive strength, fluidity, viscosity and setting time. By performing transfer and extrusion experiments, the possibility of the development of deposition construction system was demonstrated. Based on this research results, it is required to keep the automatic deposition construction system improve and extend it into the new application area in construction industry.

Development of the Evaluation Model for Performance Analysis of a Tele-operated Hume Concrete Pipe Laying Machine (흄관매설 자동화 장비의 성능분석을 위한 평가모델의 개발)

  • Ryu Yeon-Taek;Park Sang-Jun;Lee Jeong-Ho;Jeong Myung-Hoon;Kim Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.1 s.17
    • /
    • pp.157-167
    • /
    • 2004
  • In developing an automated construction system, it is essential to propose a performance evaluation model and methodology, which can measure productivity, quality, safety and economic feasibility in order to verify its superiority. Recently, a tele-operated hume concrete pipe laying machine has been developed to solve several problems related to safety, quality, productivity in conventional method. The primary objective of this study is to propose a model and methodology for the performance evaluation of the developed tele-operated hume concrete pipe laying machine. Furthermore, this study evaluates the automation machine's performance compared with the existing hume pipe laying work by using data which obtained in many field trials. It is anticipated that the proposed model and methodology might be effectively used in analyzing the performance of other automation robots.

An Exploratory Study on Adoption and Activation of IT for Korean Stone Industry (한국 석재산업의 IT 도입 및 활성화를 위한 탐색적 연구)

  • An, Jaeyoung;Lee, Choong C.;Yun, Haejung
    • Journal of Information Technology Services
    • /
    • v.17 no.2
    • /
    • pp.83-100
    • /
    • 2018
  • Demand for stone products used as building materials is increasing. The construction industry, the value of the stone industry is sufficient, but the domestic stone industry is very lag regarding IT utilization. However, the overseas stone industry produces high-quality products using IT. In this study, we want to offer an IT application technology priority fit for the stone industries. We identify the current status and production process of the stone industries, then set the priority of various IT, so that obtain competitiveness in the domestic stone industries, and minimize the gap between the overseas stone industries. Therefore, we used AHP method; stone industry production processes were selected as the Enterprise Operation Management, Quarrying, Manufacturing, Construction and Maintenance of first-tier. The second-tier ones are consisted of 30 factors out of IT elements. Focus group interviews were conducted to confirm the validity of each factor. As a result, most important factors of first-tier was selected as the order of Manufacturing, Quarrying, Enterprise Operation Management, and Construction & Maintenance. The top 5 of 30 factors in the second-tier were selected Smart Sensor, Mobile Device, Robot of manufacturing, GIS of quarrying, and SCM of enterprise operation management. And the factor that relatively less important was GPS of construction and maintenance. If properly applied an IT application technology for stone industry, we expect to provide efficient production lines and increase customer satisfaction, which will ultimately expand the promotion for the industry and thus act as positive factor in promoting the stone industry.

THE DEVELOPMENT OF THE NARROW GAP MULTI-PASS WELDING SYSTEM USING LASER VISION SYSTEM

  • Park, Hee-Chang;Park, Young-Jo;Song, Keun-Ho;Lee, Jae-Woong;Jung, Yung-Hwa;Luc Didier
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.706-713
    • /
    • 2002
  • In the multi-pass welding of pressure vessels or ships, the mechanical touch sensor system is generally used together with a manipulator to measure the gap and depth of the narrow gap to perform seam tracking. Unfortunately, such mechanical touch sensors may commit measuring errors caused by the eterioration of the measuring device. An automation system of narrow gap multi-pass welding using a laser vision system which can track the seam line of narrow gap and which can control welding power has been developed. The joint profile of the narrow gap, with 250mm depth and 28mm width, can be captured by laser vision camera. The image is then processed for defining tracking positions of the torch during welding. Then, the real-time correction of lateral and vertical position of the torch can be done by the laser vision system. The adaptive control of welding conditions like welding Currents and welding speeds, can also be performed by the laser vision system, which cannot be done by conventional mechanical touch systems. The developed automation system will be adopted to reduce the idle time of welders, which happens frequently in conventional long welding processes, and to improve the reliability of the weld quality as well.

  • PDF

Digital engineering models for prefabricated bridge piers

  • Nguyen, Duy-Cuong;Park, Seong-Jun;Shim, Chang-Su
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.35-47
    • /
    • 2022
  • Data-driven engineering is crucial for information delivery between design, fabrication, assembly, and maintenance of prefabricated structures. Design for manufacturing and assembly (DfMA) is a critical methodology for prefabricated bridge structures. In this study, a novel concept of digital engineering model that combined existing knowledge of DfMA with object-oriented parametric modeling technologies was developed. Three-dimensional (3D) geometry models and their data models for each phase of a construction project were defined for information delivery. Digital design models were used for conceptual design, including aesthetic consideration and possible variation during fabrication and assembly. The seismic performance of a bridge pier was evaluated by linking the design parameters to the calculated moment-curvature curves. Control parameters were selected to consider the tolerance control and revision of the digital models. Digitalized fabrication of the prefabricated members was realized using the digital fabrication model with G-code for a concrete printer or a robot. The fabrication error was evaluated and the design digital models were updated. The revised fabrication models were used in the preassembly simulation to guarantee constructability. For the maintenance of the bridge, the as-built information was defined for the prefabricated bridge piers. The results of this process revealed that data-driven information delivery is crucial for lifecycle management of prefabricated bridge piers.

Image-based Extraction of Histogram Index for Concrete Crack Analysis

  • Kim, Bubryur;Lee, Dong-Eun
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.912-919
    • /
    • 2022
  • The study is an image-based assessment that uses image processing techniques to determine the condition of concrete with surface cracks. The preparations of the dataset include resizing and image filtering to ensure statistical homogeneity and noise reduction. The image dataset is then segmented, making it more suited for extracting important features and easier to evaluate. The image is transformed into grayscale which removes the hue and saturation but retains the luminance. To create a clean edge map, the edge detection process is utilized to extract the major edge features of the image. The Otsu method is used to minimize intraclass variation between black and white pixels. Additionally, the median filter was employed to reduce noise while keeping the borders of the image. Image processing techniques are used to enhance the significant features of the concrete image, especially the defects. In this study, the tonal zones of the histogram and its properties are used to analyze the condition of the concrete. By examining the histogram, the viewer will be able to determine the information on the image through the number of pixels associated and each tonal characteristic on a graph. The features of the five tonal zones of the histogram which implies the qualities of the concrete image may be evaluated based on the quality of the contrast, brightness, highlights, shadow spikes, or the condition of the shadow region that corresponds to the foreground.

  • PDF

The Study of Construction Concerned Technology Curriculum Through the Using Educational Robot (교육용 로봇을 활용한 테크놀로지 교육과정 구성에 관한 연구)

  • Oh, Dong-Kyu;Hong, Myung-Hui
    • 한국정보교육학회:학술대회논문집
    • /
    • 2006.01a
    • /
    • pp.210-215
    • /
    • 2006
  • 과학을 어려워하는 어린이들에게 테크놀로지 교육은 학습자가 직접 로봇을 제작, 프로그래밍, 실행해 봄으로써 게임을 즐기듯 재미있게 참여하면서 창의적인 사고 능력과 문제 해결능력을 길러주는데 효과적이다. 본 논문은 현재 실시되고 있는 외국의 로봇교육과정을 살펴보고, 우리나라 초등학교 수준에 맞는 테크놀로지 교육과정을 수준별로 구성하였다. 이를 통해 학습자로 하여금 역동적인 상호작용을 이끌어 냄으로써, 논리적이고 비판적인 사고 능력 함양은 물론, 창의적이고 자기 주도적 문제해결능력 신장을 도모하고자 하였다.

  • PDF