• Title/Summary/Keyword: Construction Period Reduction

Search Result 225, Processing Time 0.023 seconds

Study of heavy fuel oil fly ash for use in concrete blocks and asphalt concrete mixes

  • Al-Osta, Mohammed A.;Baig, Mirza G.;Al-Malack, Muhammad H.;Al-Amoudi, Omar S. Baghabra
    • Advances in concrete construction
    • /
    • v.4 no.2
    • /
    • pp.123-143
    • /
    • 2016
  • Use of heavy fuel fly ash (HFFA) (diesel and cracked fuel) for power generation in Saudi Arabia has generated and accumulated large quantities of HFFA as a byproduct. In this research, HFFA is studied with the emphasis on the utilization of this waste material in concrete blocks and asphalt concrete mixes. Two types of mixes, one with low and other with high cement content, were studied for concrete blocks. Different mixes having varying percentages of HFFA (0% to 25%), as cement/sand replacement or as an additive, were studied. The performance of concrete blocks is evaluated in terms of compressive strength, water absorption, durability and environmental concerns. The results showed that blocks cannot be cast if more than 15% HFFA is used; also there is a marginal reduction in the strength of all the mixes before and after being exposed to the sulfate solution for a period of ten months. HFFA is studied in asphalt concrete mixes in two ways, as an asphalt modifier (3&5%) and as a filler (50%) replacement, the results showed an improvement in stiffness and fatigue life of mixes. However, the stability and indirect tensile strength loss were found to be high as compared to the control mix due to moisture damage, indicating a need of using antistripping agents. On environmental concerns, it was found that most of the concerned elements are within acceptable limits also it is observed that lower concentration of barium is leached out with the higher HFFA concentrations, which indicates that HFFA may work as an adsorbent for this leaching element.

An Experimental Study on the Fire Resistance of Composite Truss Beam (합성트러스 보의 내화성능에 관한 실험적 연구)

  • Park, Won-Sup;Kim, Heung-Youl;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.135-141
    • /
    • 2009
  • The composite truss has been widely used for tall buildings and long-span structures in North America. As compared with other similar structures, it has merits such as reduction of construction period, low span/depth ratio, low dead weight and so on. It has the most effective trait for structures with long span of 12~18m. After collapse of WTC, the fire resistance behaviors of structures have been actively conducted under various fire conditions in several country. This study showed that the surface temperature of steel member in the composit truss beam was reached to $700^{\circ}C$ under the fire condition of a short time. Under the same condition, the temperature in concrete was within $200^{\circ}C$. The composit truss beam with 20mm bracing was collapsed by rapid deflection after about 3minutes. However, the beams with 25mm, 35mm, and 45mm bracing were not collapsed, even though those were reached to deflection standard of L/20 within 15minutes.

Effect of PCE superplasticizers on rheological and strength properties of high strength self-consolidating concrete

  • Bauchkar, S.D.;Chore, H.S.
    • Advances in concrete construction
    • /
    • v.6 no.6
    • /
    • pp.561-583
    • /
    • 2018
  • A variety of polycarboxylate ether (PCE)-based superplasticizers are commercially available. Their influence on the rheological retention and slump loss in respect of concrete differ considerably. Fluidity and slump loss are the cardinal features responsible for the quality of concrete. These are related to the dispersion of cement particles and the hydration process which are greatly influenced by type of polycarboxylate ether (PCE)-based superplasticizers. On the backdrop of relatively less studies in the context of rheological retention of high strength self-consolidating concrete (HS-SCC), the experimental investigations were carried out aiming at quantifying the effect of the six different PCE polymers (PCE 1-6) on the rheological retention of HS-SCC mixes containing two types of Ordinary Portland Cements (OPC) and unwashed crushed sand as the fine aggregate. The tests that were carried out included $T_{500}$, V-Funnel, yield stress and viscosity retention tests. The supplementary cementitious materials such as fly ash (FA) and micro-silica (MS) were also used in ternary blend keeping the mix paste volume and flow of concrete constant. Low water to binder ratio was used. The results reveal that not only the PCEs of different polymer groups behave differently, but even the PCEs of same polymer groups also behave differently. The study also indicates that the HS-SCC mixes containing PCE 6 and PCE 5 performed better as compared to the mixes containing PCE 1, PCE 2, PCE 3 and PCE 4 in respect of all the rheological tests. The PCE 6 is a new class of chemical admixtures known as Polyaryl Ether (PAE) developed by BASF to provide better rheological properties in even in HS-SCC mixes at low water to binder mix. In the present study, the PCE 6, is found to help not only in reduction in the plastic viscosity and yield stress, but also provide good rheological retention over the period of 180 minutes. Further, the early compressive strength properties (one day compressive strength) highly depend on the type of PCE polymer. The side chain length of PCE polymer and the fineness of the cement considerably affect the early strength gain.

Characteristics of Changes in Water Quality in the Suyoung River During Rainfall Event (강우 시 수영강 유역의 수질변화 특성)

  • Kim, Suhyun;Kim, Jungsun;Kang, Limseok
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • Recently, it was realized that a significant portion of pollution from urban areas originates from non-point sources such as construction sites, washoff from impervious surfaces, and sewage input from unsewered areas and combined sewer overflows. Especially, Urban stormwater runoff is one of the most extensive cause of the deterioration of the water quality in streams located in urban area. The objective of this study was to investigate runoff characteristics of non-point pollutants source at the urban area in the Suyeong River. Water quality variations were investigated at two points of Suyeong River during a period of 10 rainfall events. Concentration difference of non-point pollution source appeared big by precedent number of days of no rainfall. In addition, Event mean Concentration (EMCs) that well represents runoff characteristics of storm water during rainfall, was calculated, and runoff pollutants loading was also examined. The probability distribution of EMCs of BOD, COD, TOC, T-N, T-P, and TSS were analyzed and the mean values of observed EMC and the median values of estimated EMCs compared through probability distribution. Other objectives of this study were the characterization of discharge from non-point source, the analysis of the pollutant loads and an establishment of a management plan for non-point source of Suyeong River. Also, It was established that the most important thing for the administration of non-point pollution source is to come up with the solution for the reduction of effluent at the beginning.

Performance of aerated lightweighted concrete using aluminum lathe and pumice under elevated temperature

  • Mohammad Alharthai;Yasin Onuralp Ozkilic;Memduh Karalar;Md Azree Othuman Mydin;Nebi Ozdoner;Ali Ihsan Celik
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.271-288
    • /
    • 2024
  • The primary objective of this study is to investigate the production and performance characteristics of structural concrete incorporating varying proportions (0%, 25%, and 50% by volume) of pumice stone, as well as aluminum lathe as an additive at 0%, 1%, 2%, and 3%, under fire conditions. The experiment will be conducted over a period of up to 1 hour, at temperatures ranging from 24℃, 200℃, 400℃ and 600℃. For the purpose of this, a total of twelve test samples were manufactured, and then tests of compressive strength (CS), splitting tensile strength (STS), and flexural strength (FS) were performed on these samples.Next, a comparison was made between the obtained values and the influence of temperature. To achieve this objective, the manufactured samples were placed at temperatures of 200℃, 400℃, and 600℃ for a duration of 1 hour, and were subjected to the influence of temperature.These values at 24 ℃ were then contrasted with the CS results obtained from test samples that were subjected to the temperature effect for an hour at 200 ℃, 400 ℃, and 600 ℃. A comprehensive analysis of the test outcomes reveals that the incorporation of aluminum lathe wastes into a mixture results in a significant reduction in the compressive strength of the concrete. As a result of this adjustment, the CS values dropped by 32.93%, 45.70%, and 52.07%, respectively. Furthermore, It was shown that testing the ratios of pumice stone alone resulted in a decrease in CS outcomes. Additionally, it was found that the presence of higher temperatures is clearly the primary factor contributing to the decrease in the strength of concrete. Due to elevated temperatures, the CS values decreased by 19.88%, 28.27%, and 38.61% respectively.After this investigation, an equation that explains the connection between CS and STS was provided through the utilization of the data of the experiments that were carried out.

A Study on Corrosion Potential of Cracked Concrete Beam According to Corrosion Resistance Assessment (부식 저항성 평가에 따른 균열 콘크리트 보의 부식전위 연구)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.97-105
    • /
    • 2009
  • Development and use of blended cement concrete is gaining more importance in the construction industry with reference to durability mainly due to the pore refinement and reduction in permeability. Cracks play a major role on important parameters like permeability, rate of chloride ingress, compressive strength and thus affect the reinforcement corrosion protection. Furthermore, when a crack occurs in the cover concrete, the corrosion of the steel reinforcement may be accelerated because the deterioration causing factors can pass through the crack. In recent years the effect of cracking on the penetration of concrete has been the subject of numerous investigations. Therefore assessing the service life using blended concrete becomes obviously in considering the durability. In the present study, the corrosion assessment of composite concrete beams with and without crack with of 0.3mm using OPC, 30% PFA, 60% GGBS, 10% SF was performed using half cell potential measurement, galvanic potential measurement, mass loss of steel over a period of 60days under marine environmental conditions and the results were discussed in detail.

Comparison of advance rate and powder factor of two- and three-free-face blasting (2, 3 자유면 발파의 굴진율 및 비장약량 비교)

  • Youngmin Yoon;Seokwon Jeon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.403-419
    • /
    • 2024
  • Advance rate significantly affects both the construction period and cost in tunnel blasting. As such, there has been persistent research dedicated to the development of innovative blasting technique aimed at enhancing the advance rate. This paper aims to provide fundamental insights into the differences in advance rate and the powder factor between two- and three-free-face blasting, laying the groundwork for the advancement of tunnel blasting techniques. Large-scale cement mortar specimens were fabricated, and blasting tests were conducted for both two- and three-free-face blasting. Experimental findings were then compared with those from numerical simulation. Notably, an increase in the number of free faces, under uniform conditions, significantly improved the advance rate while reducing the powder factor. The outcomes of this study serve as crucial groundwork for devising blasting patterns employing three-free-face blasting, characterized by improved advance rates and minimized powder factors. Consequently, the anticipated outcomes include an overall improvement in tunnel advance rates and a reduction in the number of drilling holes and the amounts of explosives.

An Estimation of Carbon Stocks in Harvested Wood Products in Korean Houses (우리나라 주택분야 내 목제품의 탄소저장량 추정)

  • Choi, Soo Im;Joo, Rin Won
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.708-714
    • /
    • 2011
  • Wood store carbon that the forest absorbed until burned or decomposed over a long period. Such materials are most used in houses except in paper and pulp, and the use of wood in houses play an important role in reducing green-house gases. Therefore, we estimated the amount of carbon stocks in Korean houses, and analyzed how much contribution such stocks offers to green-house gas reduction. As the result, the carbon stocks amount of the wood products in Korean houses was 28.4 million $tCO_2$, which is 4.6% of the total annual green-house gas emission in Korea (620 million $tCO_2$ e), and 77.4% of forest sinks (LULUCF). Even though few wooden houses which use most wood in housing exist in Korea, the carbon stocks of wood products in houses in 2010 increased to 4.1 times that in 1975 (21.4 million $tCO_2$) because the carbon stocks increased due to apartment construction, which hit its stride from the last 1980's.

A Study on the Properties of High-Fluidity Concrete with Low Binders Using Viscosity Agent (증점제를 사용한 저분체 고유동 콘크리트의 특성에 관한 연구)

  • Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.689-696
    • /
    • 2017
  • The practical applications of ordinary high-fluidity concrete have been limited due to several drawbacks, such as high hydration heat, high amount of shrinkage, and non-economic strength development. On the other hand, due to its advantages, such as improvement of construction quality, reduction of construction cost and period, the development of high-fluidity concrete is a pressing need. This study examined the properties of high-fluidity concrete, which can be manufactured on the low binders using a viscosity agent to prevent the segregation of materials. The optimal viscosity agent was selected by an evaluation of the mechanical properties of high-fluidity concrete among six viscosity agents. The acrylic type and urethane type viscosity agents showed the best performance within the range where no material separation occurred. The mechanical properties were evaluated to examine the optimal amount of AC and UT viscosity agent added by mixing two viscosity agents according to the adding ratio and blending them together with high performance water reducing agent. When the ratio of the AC : UT viscosity agents was 5:5, it was most suited for high-fluidity concrete with low binders by increasing the workability and effect of the reducing viscosity.

Evaluation of Loss of Prestress Force of Tensile Anchor by Long Term Measurement (장기계측을 통한 인장형 앵커의 인장력 손실 평가)

  • Lee, Bongjik;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.10
    • /
    • pp.15-22
    • /
    • 2015
  • In this study, to evaluate the long-term behavior characteristics and the loss of prestress force, the long-term measurement of the tensile anchors in the actual construction was performed and the results were analyzed comparing with the existing estimation. As the reinforcement member used for the purpose of slope stability or uplift-resisting of the permanent structure, etc, the permanent anchor should maintain the functions during the performance period of the structure differently from the temporary anchor. However, as the time passes by, since the relaxation and the creep of the anchor occur constantly, the management for the loss of tensile force is essential to perform the functions stably. So far, the loss of the tensile force has been estimated according to the reduction of the prestress using elasticity theory and using the relaxation value according to the type of tension member and the test using the long-term measurement is limited. Therefore, in this study, the site condition and the ground were investigated for the tensile anchor in the actual construction and the long-term measurement results more than 500 days was analyzed by installing the loadcell, inclinometer and the groundwater level gauge. In addition, the long-term behavior characteristics were evaluated by comparing the disposition of the measured earth retaining wall and the tension force loss of the anchor with the existing interpretation results. In the evaluation results, the most of the tension force loss occurs within 90 days and the loss was measured less than the estimated values.