• Title/Summary/Keyword: Construction Insulation Materials

Search Result 160, Processing Time 0.027 seconds

Study on the Environmental Factor Analysis of Interior Material using Hanji (한지 소재 내장재의 친환경적 요소 분석 연구)

  • Kim, Ji-Soo;Lee, Yu-Ra;Lim, Hyun-A
    • Journal of the Korea Furniture Society
    • /
    • v.22 no.1
    • /
    • pp.63-71
    • /
    • 2011
  • Hanji has known for its high qualities for more than thousand years. Hanji is stronger, and has better durability, air permeability, flexibility, thermal insulation, soundproofs and UV absorbability. Therefore, developing industrial interior finishing materials using Hanji is replaced with the PVC (Poly-Vinyl Chloride) materials instead, it will be a new environment-friendly material and positively represents Korean brand marketing. The industrial inter-construction material is discomposed by heat or light because of material characteristics. As a result, it emits a lot of noxious substances. Hanji is essentially a neutral paper since it does not rely on any acidic chemicals of artificial bleaching methods. Hanji is also known as the living paper because of its close relation to nature. Therefore, I would like to suggest that Hanji made from alternative material as a chicken fiber. It will be a non-polluting interior finishing materials by making use of Hanji to a taste of Korean culture in the green industry around the world. Rather than PVC used commonly in construction material, kitchen and office furniture, interior materials in the subway, trains, or other vessels, credit cards, and ID cards, I created an interior construction material by using patented Hanji. This will be increased the value of usefulness in the environment-friendly green industry instead of PVC.

  • PDF

A Study on Types and Contents of Asbestos in Bulk Samples (국내 석면 고형시료 중 석면의 종류 및 함유량에 관한 연구)

  • Choi, Ho-Chun;Ahn, Sun-Hee;Hong, Jwa-Ryung;Jeon, Bong-Hwan;Lee, Young-Pil;Park, Chung-Yill
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.4
    • /
    • pp.201-208
    • /
    • 2011
  • Objectives: According to the compliance of the asbestos-related regulation, every building has to be inspected for asbestos presence before its abatement work. This study was performed for identifying the types and contents of asbestos in building bulk samples. Materials and Methods: Bulk samples were collected during the asbestos inspection in 2010. We grouped the bulk samples into the regulated asbestos containing materials(RACM), presumed asbestos containing materials(PACM), and construction products. Additionally, the types of asbestos in all bulk samples were identified by polarization microscopy(PLM). Results: The RACMs were from building, house, pipe and facility. The RACMs were found mainly building (72.1%) and house (93.7%). The contents of chrysotile in building, house and facility were 66.9% (1-90%), 89.7% (2-90%) and 11.0% (2-90%), respectively. PACMs were surfacing material, thermal system insulation (TSI), and miscellaneous material. The miscellaneous materials that showed a high detection rate (79.2%) were ceiling, roofing and wall materials. Among them, the roofing materials had high chrysotile content(9.7%, 2-21%), followed by wall (8.7%, 2-21%) and ceiling (3.4%, 1-17%). In the construction products, asbestos was found mainly in slate (92.6%, 2-21%), including chrysotile. The slate had high asbestos content (9.7%, 2-21%), followed by cement flat board (8.7%, 2-19%) and textile (3.4%, 1-17%) Conclusions: Utilizing these results, it would be contributed to construct a useful ACM database and prevent from asbestos exposure to workers in the asbestos abatement and maintenance works.

A Study on the Air-Vent System of Complex Layer Applied Poly-Urethane Waterproofing Material and Air-Permeability Buffer Sheet (절연용 통기완충 시트와 폴리우레탄 도막 방수재를 복합 적층한 탈기 시스템에 관한 연구)

  • Oh, Sang-Keun;Park, Bong-Kyu;Ko, Jang-Ryeol;Park, Yoon-Chul;Kim, Su-Ryon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.1
    • /
    • pp.139-146
    • /
    • 2002
  • This study deals with the characterizing and the application like as insulation materials in the joint part in concrete surface layer and waterproofing sheet especially for roof slabs. Using steel materials and butil-rubber tape to band waterproofing sheet and concrete surface together before this waterproofing system will be applied. It can be expected to both the curability and the watertightness by coating poly-urethane 2 or 3 times with sheet surface. Therefore this waterproofing system can be possible to protect water without the damage when vapor is going out from concrete and without air pockets because of the difference temperature inside and out. This system particularly consists of air bents and elastic waterproofing sheet considering the physical damage while water can cause purely physical damage. This system is one of the most efficient ways of waterproofing system without air pocket.

A Study on the Eco-Tecnique of EcoCenter - Focused on the Building Material and Solar System - (에코센터의 생태건축기술에 관한 연구 - 건축재료와 태양에너지활용시스템을 중심으로 -)

  • Choi, Young-Ho;Shim, Woo-Gab
    • KIEAE Journal
    • /
    • v.4 no.2
    • /
    • pp.65-72
    • /
    • 2004
  • Ecological architecture enables people to recycle and reuse architectural resources within the category of ecosystem and also to minimize the effect on environment in a whole process, including architectural planning, usage and exhaustion to use sustainable energies. Rammed earth wall construction method utilized in EcoCenter located in Crystalwaters ecological village in Austrailia is a good example, which maximizes its advantages and also covers its limits to use soil and wood as structural resources. In a case of wood, they used non-treated timber to minimize environmental load and utilized used materials in openings. In the roofs, aluminum coated steel which is plated with zinc collects rain effectively even though it is not regenerable. Nontoxic finishes and insulation in floor and ceiling with used papers are able to minimize its environmental load. Solar energy system applied in EcoCenter enables them to market extra energy with electricity companies as well as support needs of its own buildings to utilize photovoltaic panel system with PV panels. Passive solar system is planned effectively in heating and cooling to apply regenerative walls in a use of rammed earth wall construction and natural ventilation systems through openings.

Characteristic of Temperature History of Slab concrete by the Change of Insulation Curing Material and Difference of Heated cable Power Capacity. (단열양생재 변화 및 열선 전력용량 차이에 따른 슬래브 콘크리트의 온도이력 특성)

  • Jung, Eun-Bong;Ahn, Sang-Ku;Jung, Sang-Hyun;Koh, Kyung-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.334-336
    • /
    • 2013
  • In this study, the temperature history was evaluated for the improved bubble sheets combining hot wires and PE films, which were developed under the extreme environmental condition of -10℃ and applied on the top surface of slab to prevent initial damage by freezing. Results can be summarized as follows. If improved bubble sheets combining hot wires with different capacity on double and quadruple bubble sheets are used, the temperature history for all materials decreased to 2~3℃ below zero but all test materials except Type 1 secured the accumulative temperature of 45° D·D at 7 days of material age, required for the prevention of initial freezing damage. This indicates the bubble sheets can prevent the initial damage by freezing.

  • PDF

Experimental Study on the Flash Over Delay Effects according to the Prevention of Flame Spread between Composite Material Panels (복합자재의 패널 간 화염확산방지에 따른 플래시오버 지연 효과에 대한 실험적 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • A sandwich panel is a composite material composed of a double-sided noncombustible material and insulation core which is used in the inner, outer walls, and roof structure of a building. Despite its excellent insulation performance, light weight and excellent constructability, a flame is brought into the inside of the panel through the joint between the panels, melting the core easily and causing casualties and property damage due to the rapid spread of flame. The current Building Law provides that the combustion performance of finishing materials for buildings should be determined using a fire test on a small amount of specimen and only a product that passes the stipulated performance standard should be used. This law also provides that in the case of finishing materials used for the outer walls of buildings, only materials that secured noncombustible or quasi-noncombustible performance should be used or flame spread prevention (FSP) should be installed. The purpose of this study was to confirm the difference between the dangers of horizontal and vertical fire spread by applying FSP, which is applied to finishing materials used for the outer walls of buildings limitedly to a sandwich panel building. Therefore, the combustion behavior and effects on the sandwich panel according to the application of FSP were measured through the construction to block the spread of flame between the panels using a full scale fire according to the test method specified in ISO 13784-1 and a metallic structure. The construction of FSP on the joint between the panels delayed the spread of flame inside the panels and the flash over time was also delayed, indicating that it could become an important factor for securing the fire safety of a building constructed using complex materials.

A Study on Selection of Pipe Materials Considering EWT (EWT를 고려한 지중열교환기 파이프 선정에 관한 연구)

  • Ryu, Hyung-Kyou;Chung, Min-Ho;Lee, Byung-Seok;Choi, Hyun-Jun;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.10 no.2
    • /
    • pp.13-18
    • /
    • 2014
  • This paper proposes an optimum pipe material (PVC vs. PE) design & selection for open loop ground heat exchangers. Heat exchange efficiency and/or workability, and the need for trench insulation were investigated by comparing EWT (cooling mode) of each system. CFD simulations for the PVC and PE pipe with the same inner diameter show similar EWT. This is because the PVC pipe has a small thickness but a low thermal conductivity as compared to the PE pipe, and thus these two properties tend to offset each other. However, a hypothetically insulated pipe led to a meaningful drop of EWT. This means pipe insulation is of importance in performance of ground heat exchangers. From analyzing climate data and system operation, it is not advantageous to insulate trench pipes due to construction difficulties and ground temperature characteristics that are seasonally varied.

Bond Capacity of Near-Surface-Mounted FRP in Concrete Corresponding to Fire-Protection Method (콘크리트에 표면매립보강된 FRP의 내화단열방법에 따른 부착성능)

  • Lim, Jong-wook;Kim, Tae-hwan;Seo, Soo-yeon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.1
    • /
    • pp.3-10
    • /
    • 2019
  • The purpose of this paper is to find the fire-protection method for keeping on the bond capacity of Near-Surface-Mounted (NSM) FRP under high temperature. Experiments have been carried out to evaluate the bond capacity of NSM FRP by using CFRP-plates and to confirm the heat transfer to the concrete block when the refractory insulation is attached to the surface of NSM FRP. Bond test of NSM FRP under room temperature was conducted to obtain the maximum bond strength. And then a heating tests were carried out with keeping the bond stress of 30% of the maximum bond strength. As a result, the bond capacity of NSM FRP was disappeared when the temperature at epoxy reached to its glass transition temperature (GTT). In order to secure the bond capacity of the NSM FRP, it is necessary to protect the front as well as side by using insulation materials.

A Study of Cooling and Heating Load Changes with Roof Type Solar Panels Installed on Factory Roof (지붕형 태양광발전 패널의 공장 지붕 설치에 따른 냉방 및 난방 부하 변화량 연구)

  • Jo, Ho-Hyeon;Kim, Jung-Min;Kim, Young Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.16 no.4
    • /
    • pp.9-15
    • /
    • 2020
  • In this study, effect of reinforced insulation on heating and cooling loads were studied due to installation of PV panels on factory building roof with a floor area of 12,960 m2. For PV panel installation, combination of aluminum, polyurethane, air, polystyrene and steel materials were added to the original roof, which increased thermal insulation performance. Half of the roof were covered with PV panel and the other half without. Temperature and relative humidity were measured for 8 days during summer season for both indoor spaces. PV panel showed the effect of lowering the indoor space temperature by 0.6℃. TRNSYS dynamic simulation showed that with PV panel, cooling load per area is reduced by 1.7 W/m2 and heating by 10.0 W/m2. PV panels installed on building roof not only generate electricity but also can save energy by reducing cooling and heating loads.

Design & Performance of the Solar Energy Research & Test Center (태양에너지 연구 시험센타 설계 및 효율에 관한 연구)

  • Auh, Paul Chung-Moo;Lee, Jong-Ho;Choi, Byung-Owan;Cho, Yil-Sik
    • Solar Energy
    • /
    • v.2 no.2
    • /
    • pp.29-36
    • /
    • 1982
  • The Solar Energy R&D Department of KIER under the auspice of the Korean government is pushing hard on the development of the passive solar technology with high priority for the expeditious widespread use of solar energy in Korea, since the past few years of experiences told us that the active solar technology is not yet ready for massive commercialization in Korea. KIER has completed the construction of the Solar Energy Research & Test Center in Seoul, which houses the major facilities for its all solar test programs. The Center was designed as a passive solar building with great emphasis on the energy conserving ideas. The Center is not only the largest passive building in Korea, but also the exhibit center for the effective demonstration of the passive heating and cooling technology to the Korean public. The Center was designed to satisfy the requirements based on the technical and economical criteria set by the KIER. Careful considerations, therefore, were given in depth in the following areas to meet the requirements. 1) Passive Heating Concepts The Center employed the combination of direct and indirect gain system. The shape of the Center is Balcomb House style, and it included a large built-in sunspace in front. A partition, consists of transparent and translucent glazings, separates the sunspace and the living space. Since most activities in the Center occur during the day time, direct utilization of the solar energy by the living spaces was emphasized with the limited energy storage capacity. 2) Passive Cooling Concepts(for Summer) Natural ventilation concept was utilized throughout the building. In the direct gain portion of the system, the front glazing can be openable during the cooling season. Natural convection scheme was also applied to the front sunspace for the Summer cooling. Reflective surfaces and curtains were utilized wherever needed. 3) Auxiliary Heat ing and Cooling System As an auxiliary cooling system, mechanical means(forced convection system) were adopted. Therefore forced air heating system was also used to match the duct work requirements of the auxiliary cool ing system. 4) Effect ive Insulation & Others These included the double glazed windows, the double entry doors, the night glazing insulation, the front glazing-frame insulation as well as the building skin insulation. All locally available construction materials were used, and natural lightings were provided as much as possible. The expected annual energy savings (compared to the non-insulated conventional building)of the Center was estimated to be about 80%, which accounts for both the energy conservation and the solar energy source. The Center is being instumented for the actual performance tests. The experimental results of the simplified tests are discussed in this paper.

  • PDF