• Title/Summary/Keyword: Construction Environments

검색결과 920건 처리시간 0.024초

건설업 근로자의 유해 작업 환경 노출 실태에 관한 연구 (Health Hazardous Substances in Construction Work in Korea)

  • 최재욱;문정수;김정아;원정일;박희찬
    • 한국산업보건학회지
    • /
    • 제10권1호
    • /
    • pp.74-92
    • /
    • 2000
  • This study was performed to evaluate the working conditions In construction workers through measurements of working environments and to improve the working conditions and to design the appropriate environmental and health management system. The results of measurement for working environments in construction work are as following: 1. The excess rate of noise and dust concentration in express highway construction, road construction, building construction and interior painting was 28.6% and 24.5% respectively. 2. The excess rate of mixed organic solvents concentration in interior painting was 39.3%. 3. The chain type bulldozer has the highest level of vibration; the excess rate was 85.7%, and among the vibration instruments, the level of left hand's vibration of all vibrators exceeded the criterion and in the case of drilling all the level of vibration exceeded the criterion in both hands. On the basis of the results in this research the environmental and health management system for construction workers must be considered. Therefore, it is necessary to be introduced the special medical examination and measurement of working environments in construction industry. In defining "the working place" of Article 39 of Enforcement regulations of industrial safety and health act, the word "indoors" should be deleted. Then the eligible industry for measurement of working environment must be extended. And it is also necessary for construction industry to be performed group health management service by agencies such as other manufacturing industry.

  • PDF

비정형 환경에서 스마트 건설을 위한 이동 플랫폼 구현 (Mobile Platform Design for Smart Construction Under Unstructured Environments)

  • 문지윤;박용구
    • 한국전자통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.1243-1248
    • /
    • 2022
  • 비정형 환경인 건설 현장에서 안정적으로 운영할 수 있는 이동 플랫폼은 스마트 건설기술 개발에 있어 중요한 문제이다. 본 논문에서는 건설 현장 지형정보 수집 지원을 위해 비정형 환경에서도 강인하게 주행할 수 있는 이동 로봇 플랫폼을 소개한다. 제안한 이동 플랫폼은 종경사 뿐만이 아닌 횡경사에도 대처할 수 있도록 설계하였으며 시뮬레이션 실험을 통해 제안한 플랫폼의 단차 극복성능을 분석하였다.

온라인 및 오프라인 블렌디드 건축시공 교육과정 개발 (Development of Online and Offline Blended Building Construction Curriculum)

  • 조민진;김재엽
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.184-185
    • /
    • 2021
  • Based on changes in capacity demanded by society as a result of the 4th industrial revolution, as well as changes in the environment due to COVID19, it is necessary to adopt new educational methods in Korean universities. In response to such changes, there have been attempts to apply innovative teaching methods, such as flipped learning and blended learning. However, most studies are limited to either learning effects and/or satisfaction. Accordingly, this study seeks to contribute to the changing educational methods by developing online and offline blended building construction curriculum. The results of this study are as follows: combined education was made possible by developing a curriculum by dividing the online and offline environments. It is determined that the developed curriculum will be efficient and appropriate for the new environments.

  • PDF

Simulating and evaluating regolith propagation effects during drilling in low gravity environments

  • Suermann, Patrick C.;Patel, Hriday H.;Sauter, Luke D.
    • Advances in Computational Design
    • /
    • 제4권2호
    • /
    • pp.141-153
    • /
    • 2019
  • This research is comprised of virtually simulating behavior while experiencing low gravity effects in advance of real world testing in low gravity aboard Zero Gravity Corporation's (Zero-G) research aircraft (727-200F). The experiment simulated a drill rig penetrating a regolith simulant. Regolith is a layer of loose, heterogeneous superficial deposits covering solid rock on surfaces of the Earth' moon, asteroids and Mars. The behavior and propagation of space debris when drilled in low gravity was tested through simulations and visualization in a leading dynamic simulation software as well as discrete element modeling software and in preparation for comparing to real world results from flying the experiment aboard Zero-G. The study of outer space regolith could lead to deeper scientific knowledge of extra-terrestrial surfaces, which could lead us to breakthroughs with respect to space mining or in-situ resource utilization (ISRU). These studies aimed to test and evaluate the drilling process in low to zero gravity environments and to determine static stress analysis on the drill when tested in low gravity environments. These tests and simulations were conducted by a team from Texas A&M University's Department of Construction Science, the United States Air Force Academy's Department of Astronautical Engineering, and Crow Industries

Factors that Impact Construction Workers' Hazard Recognition Ability and their Technological Solutions

  • Shrestha, Bandana;Park, JeeWoong;Shrestha, Pramen
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.458-464
    • /
    • 2022
  • Hazard recognition is considered as one of the pre-requisites for effective hazard management and injury prevention. However, in complex and changing environments, construction workers are often unable to identify all possible hazards that can occur in the jobsite. Therefore, identification of factors that impact hazard recognition in the work environment is necessary to reduce safety incidents as well as to develop strategies that can improve worker's hazard recognition performance. This study identified factors/problems that impact worker's hazard recognition abilities and suggested some potential technologies that can mitigate such problems. Literature reviews of journal articles and published reports related to hazard recognition studies were conducted to identify the factors. The study found out that the major factor responsible for affecting worker's hazard recognition abilities were human-related. Industry factors, Organizational factors and Physical factors of the site were the other factors identified from the study that impact worker's hazard recognition performances. The findings from the study can help site personnel recognize areas where effective measures can be directed towards worksite safety of workers while working in complex construction environments.

  • PDF

소형 굴삭기의 원격제어를 위한 주행 알고리즘 및 통신특성에 관한 연구 (A Study on Driving Algorithm and Communication Characteristics for Remote Control of Mini Excavator)

  • 정진범;김경수
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.81-90
    • /
    • 2018
  • Indoor construction site such as building demolition sites, tunnel, vinyl house, and cattle shed are subject to various risk factors such as falling stones, soot and bad odors. However, most of the mini excavators have no cabin that can protect the driver from such risk factors. Therefore, researches on remote control technology of construction equipment are actively conducted as a method for protecting the driver from the risk factors occurring in the working environment. For effective remote control, it is necessary to be able to control the travelling and work using a portable small transmitter. However, due to the limitation of the size of the transmitter, complex operation control is required to control two or more actuators with a single joystick. Also, it is essential to check how remote control characteristics change in various environments such as distance, signal strength, obstacle. Therefore, in this study, an algorithm that can control two actuators simultaneously with a single joystick signal was developed, and a communication method suitable for indoor and outdoor mini construction equipment by analyzing experimentally how the remote control characteristics vary according to various work environments and telecommunication methods proposed.

An Augmented Reality System for the Construction Industry and Its Impact on Workers' Situational Awareness

  • Abbas, Ali;Seo, JoonOh;Kim, MinKoo
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.129-136
    • /
    • 2020
  • Augmented reality (AR) technology assists construction workers by superimposing additional virtual information onto their real worksite environments. Ideally, this provides them with a better understanding of their tasks and hence boosts task performance. However, the additional information that AR places in users' field of view could limit their ability to understand what is going on in their surroundings and to predict how conditions may change in the near future. AR-assisted systems on construction sites could therefore expose their users to safety risks due to disturbance from the system. Hence, it is important to understand how AR-assisted systems can block users' understanding of their immediate environments, and in turn, how worksite safety in the construction industry could be improved through better design of such systems. This preliminary research conducted a laboratory experiment that simulated rebar inspection tasks and compared the situational awareness of AR users against that of subjects using traditional paper-based inspection methods, as measured by the Situation Awareness Rating Technique. Based on the results, we discuss the safety impact of head-mounted AR-assisted displays on situational awareness during construction tasks.

  • PDF

가상화 기반의 재구성 용이한 교전통제 통합시험시뮬레이션 베드 (A Reconfigurable Integration Test and Simulation Bed for Engagement Control Using Virtualization)

  • 조길석;정오균;윤문형
    • 한국군사과학기술학회지
    • /
    • 제26권1호
    • /
    • pp.91-101
    • /
    • 2023
  • Modeling and Simulation(M&S) technology has been widely used to solve constraints such as time, space, safety, and cost when we implement the same development and test environments as real warfare environments to develop, test, and evaluate weapon systems for the last several decades. The integration and test environments employed for development and test & evaluation are required to provide Live Virtual Construction(LVC) simulation environments for carrying out requirement analysis, design, integration, test and verification. Additionally, they are needed to provide computing environments which are possible to reconfigure computing resources and software components easily according to test configuration changes, and to run legacy software components independently on specific hardware and software environments. In this paper, an Integration Test and Simulation for Engagement Control(ITSEC) bed using a bare-metal virtualization mechanism is proposed to meet the above test and simulation requirements, and it is applied and implemented for an air missile defense system. The engagement simulation experiment results conducted on air and missile defense environments demonstrate that the proposed bed is a sufficiently cost-effective and feasible solution to reconfigure and expand application software and computing resources in accordance with various integration and test environments.

Reinforcement Leaming Using a State Partition Method under Real Environment

  • Saito, Ken;Masuda, Shiro;Yamaguchi, Toru
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.66-69
    • /
    • 2003
  • This paper considers a reinforcement learning(RL) which deals with real environments. Most reinforcement learning studies have been made by simulations because real-environment learning requires large computational cost and much time. Furthermore, it is more difficult to acquire many rewards efficiently in real environments than in virtual ones. The most important requirement to make real-environment learning successful is the appropriate construction of the state space. In this paper, to begin with, I show the basic overview of the reinforcement learning under real environments. Next, 1 introduce a state-space construction method under real environmental which is State Partition Method. Finally I apply this method to a robot navigation problem and compare it with conventional methods.

  • PDF