• Title/Summary/Keyword: Construction Element

Search Result 2,538, Processing Time 0.028 seconds

Analysis of Mechanical Properties in Steel Frame with Ductile Connections

  • Han, Minglan;Wang, Shuai;Wang, Yan
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1464-1469
    • /
    • 2018
  • Steel frames with ductile connections have good seismic performance under strong earthquake, they are now popular for high seismic design. In order to simplify the process of numerical analysis of the steel frames with ductile connections, simplified connection models are introduced, two types of springs are placed in the simplified connection model, which can simulate deformation of the panel zone and members. 6-story-3-bay steel frames with ductile connections are simplified and carried out modal analysis, fundamental periods of the frames predicted by finite-element analysis for simplified steel frame models were compared to the results for actual frame models. 2-story steel frame with reduced beam section connections is simplified and carried out pseudo-static analysis, hysteretic curves and skeleton curves of the frame obtained by finite-element analysis for simplified steel frame model are compared to test results. The comparison show that the difference between them is small, it is reliable and effective to predict mechanical properties of the steel frame with ductile connection by finite-element analysis of simplified steel frame model.

A new type notched slab approach for timber-concrete composite construction: Experimental and numerical investigation

  • Yilmaz, Semih;Karahasan, Olguhan Sevket;Altunisik, Ahmet Can;Vural, Nilhan;Demir, Serhat
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.737-750
    • /
    • 2022
  • Timber-Concrete Composite construction system consists of combining timber beam or deck and concrete with different connectors. Different fastener types are used in Timber-Concrete Composite systems. In this paper, the effects of two types of fasteners on structural behavior are compared. First, the notches were opened on timber beam, and combined with reinforced concrete slab by fasteners. This system is called as Notched Connection System. Then, timber beam and reinforced concrete slab were combined by new type designed fasteners in another model. This system is called as Notched-Slab Approach. Two laboratory models were constructed and bending tests were performed to examine the fasteners' effectiveness. Bending test results have shown that heavy damage to concrete slab occurs in Notched Connection System applications and the system becomes unusable. However, in Notched-Slab Approach applications, the damage concentrated on the fastener in the metal notch created in the slab, and no damage occurred in the concrete slab. In addition, non-destructive experimental measurements were conducted to determine the dynamic characteristics. To validate the experimental results, initial finite element models of both systems were constituted in ANSYS software using orthotropic material properties, and numerical dynamic characteristics were calculated. Finite element models of Timber-Concrete Composite systems are updated to minimize the differences by manual model updating procedure using some uncertain parameters such as material properties and boundary conditions.

Quadrilateral RAC filled FRP tubes: Compressive behavior, design and finite element models

  • Ming-Xiang Xiong;Xuchi Chen;Fengming Ren
    • Steel and Composite Structures
    • /
    • v.48 no.5
    • /
    • pp.485-498
    • /
    • 2023
  • The need for carbon neutrality in the world strives the construction industry to reduce the use of construction materials. Aiming to this, recycled aggregate concrete (RAC) could be used as it reduces the carbon dioxide emissions. Currently, RAC is mainly used in non-structural members of civil constructions, seldom used in structural members. To broaden its structural use, a new type of composite column, i.e., the square and rectangular RAC filled FRP tubes (CFFTs), has been concerned in this study. The investigation on their axial compressive behavior through physical test and numerical analysis demonstrated that the load-carrying capacity of such column is reduced with the increase of replacement ratio of recycled aggregate and aspect ratio of section but can be improved by the increase of FRP confining stiffness and corner radius, said capacity can be equivalent to their steel reinforced concrete counterparts. At failure, the hoop strain at corner of tube is unexpectedly smaller than that at flat side of the tube although the FRP tube ruptured at its corner first, revealing a premature failure. Besides, a design-oriented stress-strain model of concrete and an analysis-oriented finite element model are proposed to predict the load-strain response of square and rectangular CFFT columns, which facilitates the engineering use of RAC in load-carrying structural members.

Behavior and modeling of RC beams strengthened with NSM-steel technique

  • Md. Akter Hosen;Khalid Ahmed Al Kaaf;A.B.M. Saiful Islam;Mohd Zamin Jumaat;Zaheer Abbas Kazmi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.67-81
    • /
    • 2023
  • The reinforced concrete (RC) structures might need strengthening or upgradation due to adverse environmental conditions, design defects, modification requirements, and to prolong the expected lifespan. The RC beams have been efficiently strengthened using the near surface mounted (NSM) approach over the externally bonded reinforcing (EBR) system. In this study, the performance of RC beam elements strengthened with NSM-steel rebars was investigated using an experimental program and nonlinear finite element modeling (FEM). Nine medium-sized, rectangular cross-section RC beams total in number made up for the experimental evaluation. The beams strengthened with varying percentages of NSM reinforcement, and the number of grooves was assessed in four-point bending experiments up to failure. Based on the experimental evaluation, the load-displacement response, crack features, and failure modes of the strengthened beams were recorded and considered. According to the experimental findings, NSM steel greatly improved the flexural strength (up to about 84%) and stiffness of RC beams. The flexural response of the tested beams was simulated using a 3D non-linear finite element (FE) model. The findings of the experiments and the numerical analysis showed good agreement. The effect of the NSM groove and reinforcement on the structural response was then assessed parametrically.

The use of the strain approach to develop a new consistent triangular thin flat shell finite element with drilling rotation

  • Guenfoud, Hamza;Himeur, Mohamed;Ziou, Hassina;Guenfoud, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.385-398
    • /
    • 2018
  • In the present paper, we offer a new flat shell finite element. It is the result of the combination of a membrane element and a bending element, both based on the strain-based formulation. It is known that $C^{\circ}$ plane membrane elements provide poor deflection and stress for problems where bending is dominant. In addition, they encounter continuity and compliance problems when they connect to C1 class plate elements. The reach of the present work is to surmount these problems when a membrane element is coupled with a thin plate element in order to construct a shell element. The membrane element used is a triangular element with four nodes, three nodes at the vertices of the triangle and the fourth one at its barycenter. Each node has three degrees of freedom, two translations and one rotation around the normal. The coefficients related to the degrees of freedom at the internal node are subsequently removed from the element stiffness matrix by using the static condensation technique. The interpolation functions of strain, displacements and stresses fields are developed from equilibrium conditions. The plate element used for the construction of the present shell element is a triangular four-node thin plate element based on Kirchhoff plate theory, the strain approach, the four fictitious node, the static condensation and the analytic integration. The shell element result of this combination is robust, competitive and efficient.

An Analytical Study on Hysteresis Behavior of End-reinforced Steel-beam system(Eco-girder) (단부 보강한 합성보(Eco-girder)의 이력거동에 대한 수치해석적 연구)

  • Chae, Heung-Suk;Ryoo, Jae-Yong;Chung, Kyung-Soo;Moon, Young-Min;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.6
    • /
    • pp.543-551
    • /
    • 2010
  • The end-reinforced composite-beam (eco-girder) system was developed that has characteristics of the existing composite beams such as reduced floor height and increased strength. With it, less use of steel is expected. In the eco-girder system, only both ends of the steel-frame beam, which are vulnerable to the ultimate moment, are reinforced with steel plates so that the steel frame beam design will be based on the moment at the beam center. This study used fiber element analysis, which is a simple representation and numerical integration of the principles of the detailed Finite Element Method(FEM), to predict the hysteretic behavior of reinforced composite beams under cyclic loading. The validity of the numerical method was verified by comparing the results of this study with those of previous studies. In addition, the hysteretic behavior of the eco-girder was compared with that of the existing composite beams.

Improved Static Element Stiffness Matrix of Thin-Walled Beam-Column Elements (박벽보-기둥 요소의 개선된 정적 요소강성행렬)

  • Yun, Hee Taek;Kim, Nam Il;Kim, Moon Young;Gil, Heung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.509-518
    • /
    • 2002
  • In order to perform the spatial buckling and static analysis of the nonsymmetric thin-walled beam-column element, improved exact static stiffness matrices were evaluated using equilibrium equation and force-deformation relationships. This numerical technique was obtained using a generalized linear eigenvalue problem, by introducing 14 displacement parameters and system of linear algebraic equations with complex matrices. Unlike the evaluation of dynamic stiffness matrices, some zero eigenvalues were included. Thus, displacement parameters related to these zero eigenvalues were assumed as polynomials, with their exact distributions determined using the identity condition. The exact displacement functions corresponding to three loadingcases for initial stress-resultants were then derived, by consistently combining zero and nonzero eigenvalues and corresponding eigenvectors. Finally, exact static stiffness matrices were determined by applying member force-displacement relationships to these displacement functions. The buckling loads and displacement of thin-walled beam were evaluated and compared with analytic solutions and results using ABAQUS' shell element or straight beam element.

A Study on the Experience and Satisfaction Level of the Apartment Interior Design - Focused on the Apartment Model House in Ulsan City - (아파트 실내 공간 체험과 만족도에 관한 연구 - 울산지역 모델하우스를 중심으로 -)

  • Kim, Jung-Keun
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.6
    • /
    • pp.20-27
    • /
    • 2009
  • This study aims to understand the consumer consciousness of the interior design by experiencing the interior space of the model house provided by the construction company. For this, the author investigated the spatial images about the apartment interior design and the satisfaction level depending on the experiential elements. Survey questionnaires were distributed to people who visited six model houses. Subjects were asked about the experience about the interior space of the model house. Their response to the experiential elements was analyzed with 5-point Likert scale and was computed as frequencies, percentages, and means. For the spatial image characteristics, adjectives were substituted for the image scales. As a result, the author found out the following: First, the interior space was commonly directed to the soft image, which was mixed with modern, noble, decent, dynamic and natural styles depending on the companies. The trend of each interior design basically had static, soft and vague images, and partially had two kinds of tendencies: the one was mild and natural, and the other was modern and elegant. Second, as the strategic modules of the experiential marketing, five experiential elements were investigated to find the satisfaction level through the model house interior space. The emotional element got the highest point followed by the cognitive element and the active element, while the sensible element and the relative element got the lowest point. Third, consumer response was generally positive toward the model house interior design provided by the construction company. It is necessary to make up for the design that can give an aesthetic pleasure with familiar images, rather than give a firm recognition about the design.

Seismic Performance of CFT column to H beam Connections Reinforced with T-stiffeners (T-스티프너로 보강된 CFT 기둥-H형강보 접합부의 내진성능)

  • Kim, YoungJu;Chae, Young Suk;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.701-709
    • /
    • 2003
  • The paper presented the seismic performance of T-stiffener moment connections for use in steel moment-resisting frames. The connections were strengthened by welding the vertical and horizontal clement of the T-stiffener to the beam flange and column f1ange. Finite clement analysis and experiments were conducted to determine the behavior of T-stiffener-reinforced connections. The results of the finite element analysis confirmed the effectiveness of the T-stiffener, whose horizontal element lengthened to mitigate local stress concentrations of the beam flange on the horizontal stiffener. Full-scale specimens were also tested cyclically to study hysteresis behavior. The main parameters used were the ratio of the T-stiffener to beam strength and the shape of the horizontal element. As the length of the horizontal element increased, the deformation capacity of the connections enhanced. Likewise, all specimens behaved according to the Ramberg-Osgood curve and showed stable hysteresis behavior.

Performance Assessment of Precast Concrete Segmental Bridge Columns with Shear Resistance Connecting Structure (전단저항 연결체를 갖는 프리캐스트 세그먼트 교각의 성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Kim, Seong-Woon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.591-601
    • /
    • 2008
  • The purpose of this study was to investigate the performance of precast concrete segmental bridge columns with shear resistance connecting structure. The system can reduce work at a construction site and makes construction periods shorter. A model of precast concrete segmental bridge columns with shear resistance connecting structure was tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. An bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly modified to predict the inelastic behaviors of segmental joints. The proposed numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated.