Processing math: 100%
  • Title/Summary/Keyword: Construction Detail

Search Result 781, Processing Time 0.024 seconds

Development of CFS Jacketing Retrofit Method for Rectangular High Strength Concrete Columns by Cross Sectional Shape Modification (4각형 고강도 콘크리트 기둥 단면 변형을 통한 CFS Jacketing 보강방법 개발)

  • Lee, Jong-Gil;Kim, Jang-Ho Jay;Park, Seok-Kyun;Kim, Jin-Keun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.153-161
    • /
    • 2010
  • Numerous past studies have shown that safety and serviceability of many concrete infrastructures and buildings built in 1970's have far less strength capacities than their original intended design capacities, thereby requiring repair and strengthening. Currently, aged concrete structures are being repaired using various methods developed in the past. Unfortunately, these methods do not consider the specific conditions that these members are under, but they merely attach repairing materials on the external surface for random strength improvements. Therefore, in order to improve repair and strengthening methods by considering composite behavior between repairing material and structural member, enhanced construction methodologies are needed. Also, the enhanced repairing and strengthening methods must be able to be implemented on structural members constructed using high performance concrete to meet the present construction demand of building mammoth structures. Therefore, in this study, a repairing and strengthening method for retrofitting high strength concrete (HSC) columns that can effectively improve column performance is developed. A square HSC column's cross-sectional shape is converted to an octagonal shape by attaching precast members on the surface of the column. Then, the octagonal column surface is surface wrapped using Carbon Fiber Sheets (CFS). The method allows maximum usage of confinement effect from externally jacketing CFS to improve strength and ductility of repaired HSC columns. The research results are discussed in detail.

Layout Principles of Renaissance Classicism Architectural Style and Its Application on Modern Fashion Design - Focused on Classic Style Fashion after the Year 1999 - (르네상스 고전주의 건축양식의 조형원리와 현대패션디자인에의 적용 - 1999년 이후 클래식 스타일 패션을 중심으로 -)

  • Lee, Shin-Young
    • The Research Journal of the Costume Culture
    • /
    • v.18 no.2
    • /
    • pp.261-276
    • /
    • 2010
  • The analysis of an art trend in the principle dimension starts by observing the object of work in the perspective of formative composition and recognizing it as a universal system. It can be said that it is consistent with an interpretation method for a form theory of formal history by Heinrich W¨olfflin, a leading form critic in art criticism. Hence, the purpose of this study was to find out what are the formative principles in Renaissance Classicism as a design principle to be applicable to modern fashion by reviewing the formative characteristics of Renaissance Classicism Architecture with which W¨olfflin directly dealt. As for the theoretical literature review, I used W¨olfflin's theoretical framework and looked at the Renaissance Classicism Architecture that he studied and examined the possibility of utilizing his theory as a layout principle and the characteristics. As for analysis of design cases, I applied the aforementioned architecture layout principle to modern fashion and conducted case study analysis to delve into distinctive layout principles found in fashion. The study showed that the Renaissance Classicism Architectural Style is marked by linearity, planarity, closing and multiple unity: linearity was expressed in the observation form in fixed frontal view and an emphasis on a tangible silhouette homeogenous and definite line structures; planarity was achieved in the form of paralleled layers of frontal view element, planarity style, and identical and proportional repetition of various sizes.; closing signified the pursuit of complete and clear regularity, and architecture developed in a constructive phase through organizational inevitability and absolute invariability.; multiple unity was expressed in self-completedness and independent parallel of discrete forms and harmony of emphasized individual elements in a totality. Applying these layout characteristics of the Renaissance Classicism Architectural style and to see their individual expressive features, I found out that in adopting layout principles of the Renaissance Classicism Architecture to modern fashion, it turned out to be an emphasis of individual silhouettes, a flattened space, completed objects, organic harmony among independent parts: the emphasis of individual silhouettes was expressed in individual definitiveness of formative lines of clothes in accordance with body joints and an emphasis on formative lines of clothes; the flattened space was marked by single layer structure, planarity of elements of clothes, and listing arrangement by appropriate proportion.; the completedness of the objects was expressed by the stationary state where overall image is fixed, the construction of homogeneous and complete space, and absolute inevitability of internal layout in proportion; lastly, organic harmony of independent parts was stressed in independent completedness of each detail, and organic harmony of the whole. The expressive features would lead to a unique expression style of linear emphasis, proportion, constructive forms, and two-dimensional arrangement. The meaning of this study is follows: The characteristics of art school of thought are given shape by appling & analysing the architectural layout principles of historical art school of thought to modern fashion in the view point of formal construction dimension. The applied possibility of historical art school of thought as the source of inspiration about the fashion design is extended.

Comparative Study on the Building Outline Simplification Algorithms for the Conversion of Construction Drawings to GIS data (건설도면의 GIS 데이터 변환을 위한 건물외곽선 단순화기법 비교 연구)

  • Park, Woo-Jin;Park, Seung-Yong;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.35-41
    • /
    • 2008
  • Recently needs for the convergence of CAD and GIS data are increasing, and many studies on converting two systems to each other are being carried out. In this study, to revise and update the building data of digital map using CAD data for construction, the outline of building is abstracted from the CAD data and the outline is generalized to the same level of detail with the building data of digital map. Several line simplification algorithms to generalize the outline are adopted and compared, especially at the view of satisfaction to the drawing rule for digital map. Douglas-Peucker algorithm, Lang's algorithm, Reumann-Witkam algorithm, and Opheim algorithm are applied as the line simplification method. To evaluate the results of these algorithms, visual assessment and variation ratio of the number of points, total length of lines, the area of polygon, and satisfaction ratio to the drawing rule of digital map are analyzed. The result of Lang algorithm and Douglas-Peucker algorithm show superior satisfaction ratio. But general satisfaction ratio is 50~60% for all algorithm. Therefore there seems to be a limit to use these algorithms for the simplification method to update the building data in digital map and it is necessary to develop line simplification algorithm which satisfy the drawing rule well.

  • PDF

Development of the Elementary Science Curriculum to Enhance Creative Problem-Solving Abilities: Theme Based Construction of Contents (창의적 문제해결력 신장을 위한 과학교육과정 개발 연구-주제 중심의 초등과학교육과정 내용구성-)

  • Cho, Youn-Soon;Choi, Kyung-Hee;Suh, Ye-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.18 no.4
    • /
    • pp.527-537
    • /
    • 1998
  • This article is a part of a research on the elementary science curriculum development to enhance creative problem-solving abilities. The components of the curriculum have been identified as 'scientific knowledge', 'process skills' & 'divergent/critical thinking'. Among these components, construction of the scientific knowledge that enables creative problem-solving abilities has been selected as an intensive research topic for the purpose of the present research. To avoid or to prevent the knowledge learned from separate facts and concepts, five themes have been selected so as to incorporate with all three areas of the elementary science curriculum, i.e., physical science, earth science and life science. The five themes are, 'structure', 'change', 'interaction', 'energy' and 'stability'. The contents of elementary science, which have been selected from the 3rd, 6th and 7th National Elementary Science curriculum, were reconstructed based on the five themes given above. The results of reconstruction are presented in the form of matrix, such that the vertical axis represents how the concepts are related within each domain of science, while the horizontal axis shows how the concepts are interconnected between domains of science. Therefore, based upon the five themes, individual or separate knowledge can be put into more unified knowledge so that contribution of knowledge transfer to new ones can be expected for leaners who will be creative in problem-solving. The process and products of the curriculum development as well as the background of the present research are described and discussed in detail.

  • PDF

Effect of Aspect Ratio and Diagonal Reinforcement on Shear Performance of Concrete Coupling Beams Reinforced with High-Strength Steel Bars (세장비 및 대각철근 유무에 따른 고강도 철근보강 콘크리트 연결보의 전단성능)

  • Kim, Sun-Woo;Jang, Seok-Joon;Yun, Hyun-Do;Seo, Soo-Yeon;Chun, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.43-51
    • /
    • 2017
  • As per current seismic design codes, diagonally reinforced coupling beams are restricted to coupling beams having aspect ratio below 4. However, a grouped diagonally reinforcement detail makes distribution of steel bars in the beam much harder, furthermore it may result in poor construction quality. This paper describes the experimental results of concrete coupling beam reinforced with high-strength steel bars (SD500 & SD600 grades). In order to improve workability for fabricating coupling beams, a headed large diameter steel bar was used in this study. Two full-scale coupling beams were fabricated and tested with variables of reinforcement details and aspect ratio. To reflect real behavior characteristic of the beam coupling shear walls, a rigid steel frame system with linked joints was set on the reaction floor. As a test result, it was noted that cracking and yielding of reinforcement were initially progressed at the coupling beam-to-shear wall joint, and were progressed to the mid-span of the coupling beam, based on the steel strain and failure modes. It was found that the coupling beams have sufficient deformation capacity for drift ratio of shear wall corresponding to the design displacement in FEMA 450-1. In this study, the headed horizontal steel bar was also efficient for coupling beams to exhibit shear performance required by seismic design codes. For detailed design for coupling beam reinforced with high-strength steel, however, research about the effect of variable aspect ratios on the structural behavior of coupling beam is suggested.

Determination of the Optimal Parameters in Data Processing for the Precision Geoid Construction (정밀 지오이드 구축을 위한 자료처리의 최적 변수 결정)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.397-404
    • /
    • 2009
  • To solve the problems of distribution and quality on land gravity data, airborne gravity survey was performed in 2008 obtaining the airborne gravity data with accuracy of 1.56mGal. Since airborne gravity data is the obtained at the flight height, it is necessary to convert the airborne gravity data to the surface to combine various gravity data and compute precision geoid. In addition, Stokes' integral radius, Stokes' kernel and the radius of terrain effect computation should be optimally determined to calculate precision geoid. In this study, we made an effort to decide the optimal parameters based on the distribution and the characteristic of gravity data. Then, two geoid models were calculated using the selected parameters and the difference of geoid was calculated with mean of -16.95cm and the standard deviation of ±8.50cm. We consider that this difference is due to the distribution and errors on the gravity data. For future work, the study on the effect of geoid with newly obtained land gravity data ship-borne gravity data and GPS/Leveling data should be conducted. Furthermore, the study on the downward continuation and terran effect calculation should be studied in detail for better precision geoid construction.

  • PDF

A Study on the Analysis of Current Situation of Safety Inspections cost in Apartment houses (공동주택 안전점검대가 현황분석에 관한 연구)

  • Go, Seong-Seok;Song, Do-Heom;Yun, Yeong-Chae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.2
    • /
    • pp.62-70
    • /
    • 2014
  • An apartment house, a private facility, is a house built for many persons to live independently in a building. An apartment house is a building where life damage can happen most in case of a safety accident due to insufficient inspections. However, formal inspections are being realized due to awareness shortage of managing bodies about safety inspection and low-price order-receiving of diagnosing enterprises via the lowest bidding method. This is because it is judged that remarkable costs are inputted in repairs and reinforcement such as maintenance of a structure and that there is a large possibility of human damage in case of a safety accident in a structure. So, this paper aims to derive the points to improve in the current criterion to execute an efficient detailed inspection. As its method, the design price and execution price situation of 66 buildings inspected in detail for recent 3 years for the class 2 facilities in Gwangju Metropolitan City and Jeonranam-do are examined and analyzed. The state2 object buildings to inspect are selected through this. And this paper aims to present the points to improve through the analysis of current problems by evaluating the detailed inspection report and the detailed inspection execution price calculation criterion for the selected 10 apartment houses.

Analytical Study on the Characteristic of Fatigue Behavior in Connection Parts of Orthotropic Steel Decks with Retrofitted Structural Details in Longitudinal Rib (세로리브 내부 보강상세에 따른 강바닥판 연결부의 피로거동 특성에 관한 해석적 연구)

  • Sun, Chang Won;Park, Kyung Jin;Kyung, Kab Soo;Kim, Kyo Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.105-119
    • /
    • 2008
  • In steel deck bridges suffering directly on wheel load according to the number of serviced years, the occurrence of fatigue cracks increases in structural details, which includes the cross section parts of the longitudinal rib and transversal rib, and so on. Through the control method for these fatigue cracks the increased thickness of the steel deck plate or the application of retrofit detail to the inside of the longitudinal rib was observed to be effective. This study suggests structural details for the retrofitted and non-retrofitted longitudinal rib. The target details in this study are the connection parts of the lo ngitudinal and transversal rib, and the slit parts of transverse rib where fatigue cracks were frequently reported in previous studies. In the analyses, detailed structural analyses were performed as parameters, which include the shape, change of size and attached position. From the results the stress reduction in the target details was observed to be larger in the retroffited details. Also, the improvement of fatigue strength is more effective in the retrofitted details with the vertical rib than the bulkhead plate.

A Study on the Safety Assessment Technique of a Tunnel Using Critical Stain Concept (한계변형률 개념을 활용한 터널 안정성 평가에 관한 연구)

  • Park, Si-Hyun;Shin, Yong-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.29-41
    • /
    • 2007
  • An assesment technique for the quantitative evaluation of tunnel safety during tunnel excavation was newly proposed in this study using displacement measurements. First of all, field measurement guidelines used at tunnel construction sites in Korea and other countries were investigated. It was found out that the criteria of the guidelines were not clear and varied depending on the construction sites. The practical use of field measurement data for the evaluation of tunnel safety was very limited due to uncertainties of the guidelines related to the interpretation of measured data during the excavation. Critical strain concept is introduced in this study for the assesment of tunnel safety during the tunnel excavation. Moreover, the characteristics of tunnel displacements caused by the tunnel excavation were investigated in detail in order to investigate the practical application of the critical strain concept. The total tunnel displacements can be subdivided into three parts: displacements occurring ahead of tunnel face, displacements occurring prior to measurements, and displacements occurring after the installation of instruments. The characteristic of each portion of displacements is analysed in this study. Finally, a general method on the use of the displacement measurement data for the critical strain concept was suggested in the concrete manner, considering the field measurement practice in Korea.

A Study on Rational Design and Construction of High-Tension-Bolt Friction Joints (고장력볼트 마찰이음의 합리적 설계 및 시공에 관한 연구)

  • Lee, Seung Yong;Kyung, Kab Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.513-521
    • /
    • 2006
  • Many studies have been conducted on the high tension bolt friction connection in the view of the field practice. Those effort, however, unfortunately have not been appropriately applied in the design specifications. Recently, particularly for steel bridges, rationalization of design takes greater attention from designers and hence, demand on rationalization of high tension connection becomes more significant. The purpose of this study is to suggest direction for the rationalization of high tension bolt connection and to also provide fundamental information for the improvement of the design specifications. In order to accomplish the purposes, the design specifications in Korea was analyzed and compared with other specification from abroad, and was studied one of the most important factors including slip coefficient, and the specifications on the size of bolt holes. The effect of over-sized bolt hole and the reduction of axial force on bolt was evaluated through the experimental studies on the slippage of the high tension bolt connections. Other research topics included herein includes the difference of slip coefficients, the effect of over-sized bolt holes and the gap distance of members, and the application of filler plate and corrosion protected bolts. From the research results, it is known that the specifications in Korea apply a constant slip coefficient with respect to the contacted surface conditions while various coefficients are available depending on the contacted surface conditions. Therefore, it is recommended that the specifications in Korea also develop and detail the slip coefficient which can appropriately take account of the variation of the contacted surface conditions. It is also suggested that the limitation abroad on the over-sized bolt hole may be applied for enhancing the effectiveness of construction.