• Title/Summary/Keyword: Construction Cost per Area

Search Result 57, Processing Time 0.027 seconds

Evaluation of Function of Upland Farming for Preventing Flood and Fostering Water Resources (밭농사의 수자원 함양과 홍수조절 기능에 대한 계량화 평가)

  • Hyun, Byung-Keun;Kim, Moo-Sung;Eom, Ki-Cheol;Kang, Ki-Kyung;Yun, Hong-Bae;Seo, Myung-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.163-179
    • /
    • 2003
  • Multifunctionality of agriculture which is not traded on the market now has been an important international issue in that it environmental and public benefits. We carried out to modify and to update the function of upland farming on flood prevention and fostering water resources. Economic values of environmental benefits were evaluated by replacement cost methods. Models to evaluate the function of preventing flood were selected as: (1)precipitation(flood-inducing) - runoff(A), (2) soil depth ${\times}$ soil air phase, (3) precipitation (flood-inducing) - runoff(B), (4) soil depth ${\times}$ effective porosity of soil. Models to estimate the function of fostering water resources were (1) saturated hydraulic conductivity (Ks) ${\times}$ duration of saturation(days) ${\times}$ (1-ratio of water flow directly into river), (2) precipitation ${\times}$ ratio of water fostered by rain resources ${\times}$ (area of upland/total land area), and (3) soil water retention quantity(under standing crop or tree) - SWRQ(in bare soil). Function of preventing flood was $883Mg\;ha^{-1}$ of water per year and 645 million Mg for the whole upland area. Function of fostering water resources was $94.1Mg\;ha^{-1}$ of water per year and 69 million Mg for the whole upland area. The value of flood-preventing function evaluated by replacement cost methods was estimated 1,428 billion won per year as compared to the cost for dam construction. The value of water resource fostering were estimated 8.6 billion won in the price of living water.

Review on the Effectiveness of Apartments According to Insulation Reinforcement of Energy Saving Design Standard - Energy Cost Analysis of Space Heating and Domestic Hot Water - (에너지절약설계기준의 단열 변화에 따른 공동주택 실효성 검토 - 난방 및 급탕에너지 사용금액 분석 -)

  • Kim, Ji-hyeon;Lim, Hee-won;Lee, Hyun-seung;Shin, U-cheul
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.1
    • /
    • pp.173-178
    • /
    • 2020
  • In this study, we analyzed space heating and domestic hot water(DHW) charges from 2017 to 2018 for 151,206 households in 202 apartment complexes built from 1997 to 2016, in order to evaluate the effectiveness of Korea's insulation standards reinforcement. The applied insulation standards were revised three times(in 1987, 2001 and 2010). We used the Anderson-Darling test to review the normality of the space heating and DHW charges. As a result, each p-value was greater than 0.05 and it followed the normal distribution. The annual average space heating charges per unit area of apartments with the 1987 insulation standards were 5,237₩/㎡a in 2017 and 5,328₩/㎡a in 2018. The heating charges with the 2001 standards were 4,827₩/㎡a in 2017 and 4,817₩/㎡a in 2018. Compared to previous standards(1987 standards), heating charges decreased by 7.8% and 9.6%. Also the heating charges with the 2010 standards were 3,683₩/㎡a in 2017 and 3,734₩/㎡a in 2018. Compared to previous standards(2001 standards), heating charges decreased by 24.3% and 21.5%. On the other hand, compared to each previous standards, DHW charges were decreased by 12.2%, 13.6% or increased by 4.6%, 6.9%, which means there's no correlation between insulation standards reinforcement and DHW charges.

A Study on a Calculation Method of Economical Intake Water Depth in the Design of Head Works (취입모의 경제적 계획취입수심 산정방법에 대한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4592-4598
    • /
    • 1978
  • The purpose of this research is to find out mathemetically an economical intake water depth in the design of head works through the derivation of some formulas. For the performance of the purpose the following formulas were found out for the design intake water depth in each flow type of intake sluice, such as overflow type and orifice type. (1) The conditional equations of !he economical intake water depth in .case that weir body is placed on permeable soil layer ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } { Cp}_{3 }L(0.67 SQRT { q} -0.61) { ( { d}_{0 }+ { h}_{1 }+ { h}_{0 } )}^{- { 1} over {2 } }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { dcp}_{3 }L+ { nkp}_{5 }+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ] =0}}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } C { p}_{3 }L(0.67 SQRT { q} -0.61)}}}} {{{{ { ({d }_{0 }+ { h}_{1 }+ { h}_{0 } )}^{ - { 1} over {2 } }- { { 3Q}_{1 } { p}_{ 6} { { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{ 2}m' SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L }}}} {{{{+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 } L+dC { p}_{4 }L+(2 { z}_{0 }+m )(1-s) { L}_{d } { p}_{7 }]=0 }}}} where, z=outer slope of weir body (value of cotangent), h1=intake water depth (m), L=total length of weir (m), C=Bligh's creep ratio, q=flood discharge overflowing weir crest per unit length of weir (m3/sec/m), d0=average height to intake sill elevation in weir (m), h0=freeboard of weir (m), Q1=design irrigation requirements (m3/sec), m1=coefficient of head loss (0.9∼0.95) s=(h1-h2)/h1, h2=flow water depth outside intake sluice gate (m), b=width of weir crest (m), r=specific weight of weir materials, d=depth of cutting along seepage length under the weir (m), n=number of side contraction, k=coefficient of side contraction loss (0.02∼0.04), m2=coefficient of discharge (0.7∼0.9) m'=h0/h1, h0=open height of gate (m), p1 and p4=unit price of weir body and of excavation of weir site, respectively (won/㎥), p2 and p3=unit price of construction form and of revetment for protection of downstream riverbed, respectively (won/㎡), p5 and p6=average cost per unit width of intake sluice including cost of intake canal having the same one as width of the sluice in case of overflow type and orifice type respectively (won/m), zo : inner slope of section area in intake canal from its beginning point to its changing point to ordinary flow section, m: coefficient concerning the mean width of intak canal site,a : freeboard of intake canal. (2) The conditional equations of the economical intake water depth in case that weir body is built on the foundation of rock bed ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { nkp}_{5 }}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0 }}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{6 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{2 }m' SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0}}}} The construction cost of weir cut-off and revetment on outside slope of leeve, and the damages suffered from inundation in upstream area were not included in the process of deriving the above conditional equations, but it is true that magnitude of intake water depth influences somewhat on the cost and damages. Therefore, in applying the above equations the fact that should not be over looked is that the design value of intake water depth to be adopted should not be more largely determined than the value of h1 satisfying the above formulas.

  • PDF

A Study on Socio-economic Investment Effects of Ginger Storage in Artificial Caves (In the Case of Seochun Districts in Chungnam Province) (토굴을 이용한 생강저장의 사회 경제적 투자효과 분석 - 서산지역을 중심으로 -)

  • Lee, Mu Won;Lim, Jae Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.310-320
    • /
    • 1998
  • This study is aimed at identifying the socio-economic effects of storage of ginger in artificial caves. The gingers stored in artificial caves in Seochun, 12 sampled areas, were surveyed to get information on the socio-economic effects. The surveyed data were processed by TSP, Qbasic and B/C Ratio computer programs and analyzed the decision making criteria such as B/C ratio, NPV and IRR. The socio-economic effects of the storages of the gingers are as follows. 1. The storage benefits per ton was showed as 184,050won. 2. Considering 10% of the opportunity cost of capital, the uper limits of investments for the cave storages was analyzed as 6,784 thousand won for ginger. 3. The investment of the natural cave storages was revealed economically feasible considering the decision making criteria as B/C ratio = 1.33, NPV = 35.059 thousand won and IRR = more than 100%. The other socio-economic effects of the ginger storages was expected as ; 1. The cave storages will contribute to increase consumer's and producer's welfare through the control of supply and demand and price stability. 2. Long-term storage of ginger without damaging quality and grades will be made on account of the storage conditions as relatively low temperature, high humidity and indifferent affects from the outside climate. 3. Utilization of the underground space, the caves, for storage will maximize the land use and the sustainable environment considering the mountainous area, two third of the total national land area. 4. Construction costs of the underground storage facilities as caves are cheaper than the ground storage facilities by 15 to 20% in general. In conclusion, the underground space like natural and artificial caves are considered the most suitable for storage of ginger on account of the storage conditions as temperature, humidity and blocking the sun light. Accordingly a study on convenient utilization of new development of artificial caves should be made considering transportation and input-output of the farms. Financial support of the government should be institutionally rearranged for the successful implementation of storing farm products like ginger in natural and man-made caves.

  • PDF

Analysis of the Utilization Characteristics of Electrical Power and Equipments on the Farms (농촌의 전력및 전기기기의 이용특성분석)

  • 박승우;류한열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3943-3955
    • /
    • 1975
  • The purposes of this study are to evaluate the utilization characteristics of electrical power consumption, to grasp the present trends in the use of electrical equipments, to estimate the demand factor and load factor being held, and to evaluate the efficiency of electical uses for the recently electrified farms cultivating paddy rice. For the purposes, 109 sample farms located in eleven villiages electrified in six different years from 1968 to 1973, were chosen at random and investigated on 35 items concerning to electrical uses and wiring systems. The survey was carried out in 1975, in the vinicity of Suweon city. The results are summarized as follows: i) The average annual power consumption on sample farms is considered to be low, being 242.9 Kwh. in 1974, and varied according to the different electrified year and size of cultivated land, respectively. It has significant positive correlation to the area of farm, too. ii) Between the number of year of electrical uses and the power consumption, there is very significant positive correlation, which could be expressed as Y=43.041+16.108 X, where X represents the number of years of electrical uses. The annual increment of power consumption is much greater at the beginning of the electrification than that at the later years, its average being approximately 20 percent. However, it is recommended that any estimation of long-term increments should be carefully investigated. iii) The monthly power consumption varies considerably throughout a year, in which the heaviest farm load occurs in November. Observing the seasonal variation of consumption, the winter-time is the heaviest season while the summer is the lowest. The result implies house lighting is chief contribution to the present electrical consumption on the farms. Comparing the variation of monthly consumption ratios between the sample farms and industries, the electrical uses on the farms are independant of the industrial uses, and further, the agricultural uses are of inverse pattern to the farms from the results that there is negative correlationship between them, iv) The number of electrical equipments used on the farms are occupied chiefly by lighting sources. Next to the lighting sources, household appliances of small quantity and some motors are used. The mean electrical quantity is about 1, 127.4 watt, which corresponds to about 37.6 per cent to the contracted quantity. The composition of quantity is chiefly occupied by the electrical motor of about 1.5 hp., single-phased. The number of the annual utilization hours of each equipment is tabulated in Table IV-5. In contradiction to the high utilization of lighting sources and small household appliances, the motor is poorly used for approximately 22 hours in a year. v) More than 55 per cent of farms want to purchase new electrical equipments such as small household appliances and electrical motors in their number. The impulse of purchasing such items is stimulated by the contacts to the mass media and their knowledge on such equipments. Consequently, the increase of electrical uses could be prompted by such trials as education and demonstration. vi) The demand and load factors on the farms vary considerably according to the greater variation of the power consumption, daily or monthly. The daily demand factor is 22.4 per cent and load factor 18.6 per cent, while the annual demand factor is 1.3 per cent and load factor 70 per cent approximately. Therefore, the low efficiency of construction cost requires re-evaluation of the present contracted quantity of 3 Kw. or increase of electrical uses. vii) The electrical energy on the farms devoted chiefly to lighten the farm residences does not contribute to the farm incomes. Consequently, the cost of electrical consumption presses considerably upon the farm economy. Therefore, there is great need to build up the electrical uses on the farms through the development of new works and techinques to utilize any electrical equipments on the production of farm products. Further more, such the development should be related to increase the actual income of the farm consumers.

  • PDF

The Business Model & Feasibility Analysis of the Han-Ok Residential Housing Block (한옥주거단지 사업모델구상 및 타당성 분석)

  • Choi, Sang-Hee;Song, Ki-Wook;Park, Sin-Won
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.453-461
    • /
    • 2011
  • This study is to derive a project model based on potential demand for Korean-style houses, focusing on new town detached housing sites that LH supplies and to test validity of the derived model and to present the direction and supply methods of the projects. The existing high-class new town Korean-style housing developments that have been considered were found to have little business value due to problems in choice of location and discordance of demand, so 6 types of projects were established through the methods of changes in planned scale, combined use, and subdivision of plot of land based on the results of survey. The type that has the highest business value among the project models was block-type multifamily houses, and this can be interpreted as the increase in total construction area leading to increase inrevenues of allotment sales due to economies of scale. The feasibility of mass housing model in which small-scale Korean-style houses are combined with amenities was found to be high, and if the same project conditions as those of the block-type multifamily houses are applied, the business value of the Korean-style tenement houses was found to be high. Besides, the high-class housing models within block-type detached housing areas are typical projects that the private sector generally promotes, and the construction cost was found to be most expensive with 910 million won per house. In order to enhance the business value of the Korean-style housing development, collectivization such as choice of location, diversification of demand classes, optimization of house sizes, and combination of uses is needed. And in order to adopt Korean-style houses in the detached housing sites, the adjustments and division of the existing planned plots are needed, and the strategies to cope with new demand through supplying Korean-style housing types of sites can be suggested. Also breaking away from the existing uniform residential development methods, the development method through supplying original land that is natural land not yet developed besides basic infrastructures (main roads and water and sewage) can be considered, and as the construction of more than 1~2 stories building is impossible due to the structure of Korean-style house roof and furniture. So it can be suggested that original land in the form of hilly land is considered to be most suitable to large-scale development projects.

Studies on Dairy Farming Status, Reproductive Efficiencies and Disorders in New Zealand (I) A Survey on Dairy Farming Status and Milk Yield in Palmerston North Area (뉴질랜드 (Palmerston North) 의 낙농 현황과 번식 및 번식장해에 관한 연구(I) Palmerston North 지역의 낙농 현황과 우유 생산량에 관한 조사 연구)

  • 김중계;맥도날드
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.1
    • /
    • pp.1-18
    • /
    • 2000
  • Eighty dairy farms in Palmers ton North area in New Zealand were surveyed on 1) general characteristics (10 Questions), 2) milk yield and feed supplementary (7 questions), 3) reproductive efficiencies (12 questions) and 4) reproductive disorders (12 questions) by mail questions from February to July, 1998. Among those 4 items from 38 dairy farms (47.5%), especially in items 1) and 2), overall dairy farming situation, supplementary feeding and milk yields were surveyed and analyzed for Korean dairy farmers (especially in Cheju island) to have better understanding or higher economical gains. The results were as follows. 1. In dairy experience, 21 (45%) among 38 dairy farms surveyed were answered that farming less than 15 years, 15~19 year, 20~25 years and over 26 years experience were 3 (7.9%), 7 (18.4%), 6 (15.8%) and 5 (13.2%) which generally showed longer experience compare to Korean dairy farming situation. In survey of labour input and business goal of dairy farming, self-managing farms, sharemilkers, unpaid family manpowering farms, manager running farms, farms with hired worker, farms with part time helper and other type was 21 (55.3%), 10 (26.3%), 2 (3.5%), 3 (5.3%), 18 (31.6%), 2 (3.5%), and 1 (1.8%), respectively. 2. Analyzing pasture and tillable land, pasture according to feeding scale (200, 300 and 400 heads) were 56, 90 and 165.3 ha, and tillable lands were 51, 78 and 165 ha which showed some differences among feeding scale. In recording methods in 38 farms replied, 36 (95%) dairy handbook and 23 (70%) dual methods taking farms were higher than that of 10 (26.3%) computer and 15(39.5%) well-recorder methods. 3. Dairy waste processing facilities in environmental field were almost perfect except of metropolitan area, and so no problem was developed in its control so far. Hence, 26 farm (68.4%) of pond system was higher rather than those in 8 (21.2%) of using as organic manure after storing feces of dairy cattle, 1(2.6%) bunker system and 3 (7.9%) other type farms. 4. In milking facilities, 33 farms (86.9%) of Harringbone types were higher than those in 3 (7.9%) of Walkthrough types, 1 (2.6%) of Rotary system and other types. Although the construction facilities was not enough, this system show the world-leveled dairy country to attempted to elevate economic gains using the advantage of climatic condition. 5. In milking day and yearly yield per head, average 275 milking days and 87 drying days were longer than that of 228 average milking days in New Zealand. Annual total milk yield per head and milk solid (ms) was 3,990 kg and approximately 319 kg. Dairy milk solid (ms) per head, milk yield, fat percentage was 1.2 kg, 15.5 kg and average 4.83% which was much higher than in other country, and milk protein was average 3.75%. 6. In coclusion, Palmerstone North has been a center of dairy farming in New Zealand for the last 21 years. Their dairy farming history is 6~9 year longer than ours and the average number of milking cows per farm is 355, which is much greater than that (35) of Korea. They do not have dairy barn, but only milking parlors. Cows are taken care of by family 0.5 persons), are on a planned calving schedule in spring (93%) and milked for 240~280 days a year, avoiding winter. Cows are dried according to milk yield and body condition score. This management system is quite different from that of Korean dairy farms. Cows are not fed concentrates, relying entirely on pasture forages and the average milk yield per cow is 3,500 kg, which is about 1/2 milk yield of Korean dairy farms. They were bred to produce high fat milk with an average of 4.5%. Their milk production cost is the lowest in the world and the country's economy relies heavily on milk production. We Korean farmers may try to increase farming size, decreasing labor and management costs.

  • PDF