• Title/Summary/Keyword: Construction Business Process

Search Result 580, Processing Time 0.029 seconds

GIS-based Market Analysis and Sales Management System : The Case of a Telecommunication Company (시장분석 및 영업관리 역량 강화를 위한 통신사의 GIS 적용 사례)

  • Chang, Nam-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.61-75
    • /
    • 2011
  • A Geographic Information System(GIS) is a system that captures, stores, analyzes, manages and presents data with reference to geographic location data. In the later 1990s and earlier 2000s it was limitedly used in government sectors such as public utility management, urban planning, landscape architecture, and environmental contamination control. However, a growing number of open-source packages running on a range of operating systems enabled many private enterprises to explore the concept of viewing GIS-based sales and customer data over their own computer monitors. K telecommunication company has dominated the Korean telecommunication market by providing diverse services, such as high-speed internet, PSTN(Public Switched Telephone Network), VOLP (Voice Over Internet Protocol), and IPTV(Internet Protocol Television). Even though the telecommunication market in Korea is huge, the competition between major services providers is growing more fierce than ever before. Service providers struggled to acquire as many new customers as possible, attempted to cross sell more products to their regular customers, and made more efforts on retaining the best customers by offering unprecedented benefits. Most service providers including K telecommunication company tried to adopt the concept of customer relationship management(CRM), and analyze customer's demographic and transactional data statistically in order to understand their customer's behavior. However, managing customer information has still remained at the basic level, and the quality and the quantity of customer data were not enough not only to understand the customers but also to design a strategy for marketing and sales. For example, the currently used 3,074 legal regional divisions, which are originally defined by the government, were too broad to calculate sub-regional customer's service subscription and cancellation ratio. Additional external data such as house size, house price, and household demographics are also needed to measure sales potential. Furthermore, making tables and reports were time consuming and they were insufficient to make a clear judgment about the market situation. In 2009, this company needed a dramatic shift in the way marketing and sales activities, and finally developed a dedicated GIS_based market analysis and sales management system. This system made huge improvement in the efficiency with which the company was able to manage and organize all customer and sales related information, and access to those information easily and visually. After the GIS information system was developed, and applied to marketing and sales activities at the corporate level, the company was reported to increase sales and market share substantially. This was due to the fact that by analyzing past market and sales initiatives, creating sales potential, and targeting key markets, the system could make suggestions and enable the company to focus its resources on the demographics most likely to respond to the promotion. This paper reviews subjective and unclear marketing and sales activities that K telecommunication company operated, and introduces the whole process of developing the GIS information system. The process consists of the following 5 modules : (1) Customer profile cleansing and standardization, (2) Internal/External DB enrichment, (3) Segmentation of 3,074 legal regions into 46,590 sub_regions called blocks, (4) GIS data mart design, and (5) GIS system construction. The objective of this case study is to emphasize the need of GIS system and how it works in the private enterprises by reviewing the development process of the K company's market analysis and sales management system. We hope that this paper suggest valuable guideline to companies that consider introducing or constructing a GIS information system.

Knowledge Management Strategy of a Franchise Business : The Case of a Paris Baguette Bakery (프랜차이즈 기업의 지식경영 전략 : 파리바게뜨 사례를 중심으로)

  • Cho, Joon-Sang;Kim, Bo-Yong
    • Journal of Distribution Science
    • /
    • v.10 no.6
    • /
    • pp.39-53
    • /
    • 2012
  • It is widely known that knowledge management plays a facilitating role that contributes to upgrading organizational performance. Knowledge management systems (KMS), especially, support the knowledge management process including the sharing, creating, and using of knowledge within a company, and maximize the value of knowledge resources within an organization. Despite this widely held belief, there are few studies that describe how companies actually develop, share, and practice their knowledge. Companies in the domestic small franchise sector, which are in the early stages in terms of knowledge management, need to improve their KMS to manage their franchisees effectively. From this perspective, this study uses a qualitative approach to explore the actual process of knowledge management implementation. This article presents a case study of PB (Paris Baguette) company, which is the first to build a KMS in the franchise industry. The study was able to confirm the following facts through the analysis of target companies. First, the chief executive's support is a critical success factor and this support can increase the participation of organization members. Second, it is important to build a process and culture that actively creates and leverages information in knowledge management activities. The organizational learning culture should be one where the creation, learning, and sharing of new knowledge is developed continuously. Third, a horizontal network organization is needed in order to make relationships within the organization more close-knit. Fourth, in order to connect the diverse processes such as knowledge acquisition, storage, and utilization of knowledge management activities, information technology (IT) capabilities are essential. Indeed, IT can be a powerful tool for improving the quality of work and maximizing the spread and use of knowledge. However, during the construction of an intranet based KMS, research is required to ensure that the most efficient system is implemented. Finally, proper evaluation and compensation are important success factors. In order to develop knowledge workers, an appropriate program of promotion and compensation should be established. Also, building members' confidence in the benefits of knowledge management should be an ongoing activity. The company developed its original KMS to achieve a flexible and proactive organization, and a new KMS to improve organizational and personal capabilities. The PB case shows that there are differences between participants perceptions and actual performance in managing knowledge; that knowledge management is not a matter of formality but a paradigm that assures the sharing of knowledge; and that IT boosts communication skills, thus creating a mutual relationship to enhance the flow of knowledge and information between people. Knowledge management for building organizational capabilities can be successful when considering its focus and ways to increase its acceptance. This study suggests guidelines for major factors that corporate executives of domestic franchises should consider to improve knowledge management and the higher operating activities that can be used.

  • PDF

The effect of Big-data investment on the Market value of Firm (기업의 빅데이터 투자가 기업가치에 미치는 영향 연구)

  • Kwon, Young jin;Jung, Woo-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.99-122
    • /
    • 2019
  • According to the recent IDC (International Data Corporation) report, as from 2025, the total volume of data is estimated to reach ten times higher than that of 2016, corresponding to 163 zettabytes. then the main body of generating information is moving more toward corporations than consumers. So-called "the wave of Big-data" is arriving, and the following aftermath affects entire industries and firms, respectively and collectively. Therefore, effective management of vast amounts of data is more important than ever in terms of the firm. However, there have been no previous studies that measure the effects of big data investment, even though there are number of previous studies that quantitatively the effects of IT investment. Therefore, we quantitatively analyze the Big-data investment effects, which assists firm's investment decision making. This study applied the Event Study Methodology, which is based on the efficient market hypothesis as the theoretical basis, to measure the effect of the big data investment of firms on the response of market investors. In addition, five sub-variables were set to analyze this effect in more depth: the contents are firm size classification, industry classification (finance and ICT), investment completion classification, and vendor existence classification. To measure the impact of Big data investment announcements, Data from 91 announcements from 2010 to 2017 were used as data, and the effect of investment was more empirically observed by observing changes in corporate value immediately after the disclosure. This study collected data on Big Data Investment related to Naver 's' News' category, the largest portal site in Korea. In addition, when selecting the target companies, we extracted the disclosures of listed companies in the KOSPI and KOSDAQ market. During the collection process, the search keywords were searched through the keywords 'Big data construction', 'Big data introduction', 'Big data investment', 'Big data order', and 'Big data development'. The results of the empirically proved analysis are as follows. First, we found that the market value of 91 publicly listed firms, who announced Big-data investment, increased by 0.92%. In particular, we can see that the market value of finance firms, non-ICT firms, small-cap firms are significantly increased. This result can be interpreted as the market investors perceive positively the big data investment of the enterprise, allowing market investors to better understand the company's big data investment. Second, statistical demonstration that the market value of financial firms and non - ICT firms increases after Big data investment announcement is proved statistically. Third, this study measured the effect of big data investment by dividing by company size and classified it into the top 30% and the bottom 30% of company size standard (market capitalization) without measuring the median value. To maximize the difference. The analysis showed that the investment effect of small sample companies was greater, and the difference between the two groups was also clear. Fourth, one of the most significant features of this study is that the Big Data Investment announcements are classified and structured according to vendor status. We have shown that the investment effect of a group with vendor involvement (with or without a vendor) is very large, indicating that market investors are very positive about the involvement of big data specialist vendors. Lastly but not least, it is also interesting that market investors are evaluating investment more positively at the time of the Big data Investment announcement, which is scheduled to be built rather than completed. Applying this to the industry, it would be effective for a company to make a disclosure when it decided to invest in big data in terms of increasing the market value. Our study has an academic implication, as prior research looked for the impact of Big-data investment has been nonexistent. This study also has a practical implication in that it can be a practical reference material for business decision makers considering big data investment.

Detection of Phantom Transaction using Data Mining: The Case of Agricultural Product Wholesale Market (데이터마이닝을 이용한 허위거래 예측 모형: 농산물 도매시장 사례)

  • Lee, Seon Ah;Chang, Namsik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.161-177
    • /
    • 2015
  • With the rapid evolution of technology, the size, number, and the type of databases has increased concomitantly, so data mining approaches face many challenging applications from databases. One such application is discovery of fraud patterns from agricultural product wholesale transaction instances. The agricultural product wholesale market in Korea is huge, and vast numbers of transactions have been made every day. The demand for agricultural products continues to grow, and the use of electronic auction systems raises the efficiency of operations of wholesale market. Certainly, the number of unusual transactions is also assumed to be increased in proportion to the trading amount, where an unusual transaction is often the first sign of fraud. However, it is very difficult to identify and detect these transactions and the corresponding fraud occurred in agricultural product wholesale market because the types of fraud are more intelligent than ever before. The fraud can be detected by verifying the overall transaction records manually, but it requires significant amount of human resources, and ultimately is not a practical approach. Frauds also can be revealed by victim's report or complaint. But there are usually no victims in the agricultural product wholesale frauds because they are committed by collusion of an auction company and an intermediary wholesaler. Nevertheless, it is required to monitor transaction records continuously and to make an effort to prevent any fraud, because the fraud not only disturbs the fair trade order of the market but also reduces the credibility of the market rapidly. Applying data mining to such an environment is very useful since it can discover unknown fraud patterns or features from a large volume of transaction data properly. The objective of this research is to empirically investigate the factors necessary to detect fraud transactions in an agricultural product wholesale market by developing a data mining based fraud detection model. One of major frauds is the phantom transaction, which is a colluding transaction by the seller(auction company or forwarder) and buyer(intermediary wholesaler) to commit the fraud transaction. They pretend to fulfill the transaction by recording false data in the online transaction processing system without actually selling products, and the seller receives money from the buyer. This leads to the overstatement of sales performance and illegal money transfers, which reduces the credibility of market. This paper reviews the environment of wholesale market such as types of transactions, roles of participants of the market, and various types and characteristics of frauds, and introduces the whole process of developing the phantom transaction detection model. The process consists of the following 4 modules: (1) Data cleaning and standardization (2) Statistical data analysis such as distribution and correlation analysis, (3) Construction of classification model using decision-tree induction approach, (4) Verification of the model in terms of hit ratio. We collected real data from 6 associations of agricultural producers in metropolitan markets. Final model with a decision-tree induction approach revealed that monthly average trading price of item offered by forwarders is a key variable in detecting the phantom transaction. The verification procedure also confirmed the suitability of the results. However, even though the performance of the results of this research is satisfactory, sensitive issues are still remained for improving classification accuracy and conciseness of rules. One such issue is the robustness of data mining model. Data mining is very much data-oriented, so data mining models tend to be very sensitive to changes of data or situations. Thus, it is evident that this non-robustness of data mining model requires continuous remodeling as data or situation changes. We hope that this paper suggest valuable guideline to organizations and companies that consider introducing or constructing a fraud detection model in the future.

The Influence of Store Environment on Service Brand Personality and Repurchase Intention (점포의 물리적 환경이 서비스 브랜드 개성과 재구매의도에 미치는 영향)

  • Kim, Hyoung-Gil;Kim, Jung-Hee;Kim, Youn-Jeong
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.4
    • /
    • pp.141-173
    • /
    • 2007
  • The study examines how the environmental factors of store influence service brand personality and repurchase intention in the service environment. The service industry has been experiencing the intensified competition with the industry's continuous growth and the influence from rapid technological advancement. Under the circumstances, it has become ever more important for the brand competitiveness to be distinctively recognized against competition. A brand needs to be distinguished and differentiated from competing companies because they are all engaged in the similar environment of the service industry. The differentiation of brand achievement has become increasingly important to highlight certain brand functions to include emotional, self-expressive, and symbolic functions since the importance of such functions has been further emphasized in promoting consumption activities. That is the recent role of brand personality that has been emphasized in the service industry. In other words, customers now freely and actively express their personalities or egos in consumption activities, taking an important role in construction of a brand asset. Hence, the study suggests that it is necessary to disperse the recognition and acknowledgement that the maintenance of the existing customers contributes more to boost repurchase intention when it is compared to the efforts to create new customers, particularly in the service industry. Meanwhile, the store itself can offer a unique environment that may influence the consumer's purchase decision. Consumers interact with store environments in the process of,virtually, all household purchase they make (Sarel 1981). Thus, store environments may encourage customers to purchase. The roles that store environments play are to provide informational cues to customers about the store and goods and communicate messages to stimulate consumers' emotions. The store environments differentiate the store from competing stores and build a unique service brand personality. However, the existing studies related to brand in the service industry mostly concentrated on the relationship between the quality of service and customer satisfaction, and they are mostly generalized while the connective studies focused on brand personality. Such approaches show limitations and are insufficient to investigate on the relationship between store environment and brand personality in the service industry. Accordingly, the study intends to identify the level of contribution to the establishment of brand personality made by the store's physical environments that influence on the specific brand characteristics depending on the type of service. The study also intends to identify what kind of relationships with brand personality exists with brand personality while being influenced by store environments. In addition, the study intends to make meaningful suggestions to better direct marketing efforts by identifying whether a brand personality makes a positive influence to induce an intention for repurchase. For this study, the service industry is classified into four categories based on to the characteristics of service: experimental-emotional service, emotional -credible service, credible-functional service, and functional-experimental service. The type of business with the most frequent customer contact is determined for each service type and the enterprise with the highest brand value in each service sector based on the report made by the Korea Management Association. They are designated as the representative of each category. The selected representatives are a fast-food store (experimental-emotional service), a cinema house (emotional-credible service), a bank (credible-functional service), and discount store (functional-experimental service). The survey was conducted for the four selected brands to represent each service category among consumers who are experienced users of the designated stores in Seoul Metropolitan City and Gyeonggi province via written questionnaires in order to verify the suggested assumptions in the study. In particular, the survey adopted 15 scales, which represent each characteristic factor, among the 42 unique characteristics developed by Jennifer Aaker(1997) to assess the brand personality of each service brand. SPSS for Windows Release 12.0 and LISREL were used in the analysis of data verification. The methodology of the structural equation model was used for the study and the pivotal findings are as follows. 1) The environmental factors ware classified as design factors, ambient factors, and social factors. Therefore, the validity of measurement scale of Baker et al. (1994) was proved. 2) The service brand personalities were subdivided as sincerity, excitement, competence, sophistication, and ruggedness, which makes the use of the brand personality scales by Jennifer Aaker(1997) appropriate in the service industry as well. 3) One-way ANOVA analysis on the scales of store environment and service brand personality showed that there exist statistically significant differences in each service category. For example, the social factors were highest in discount stores, while the ambient factors and design factors were highest in fast-food stores. The discount stores were highest in the sincerity and excitement, while the highest point for banks was in the competence and ruggedness, and the highest point for fast-food stores was in the sophistication, The consumers will make a different respond to the physical environment of stores and service brand personality that are inherent to the corresponding service interface. Hence, the customers will make a different decision-making when dealing with different service categories. In this aspect, the relationships of variables in the proposed hypothesis appear to work in a different way depending on the exposed service category. 4) The store environment factors influenced on service brand personalities differently by category of service. The factors of store's physical environment are transferred to a brand and were verified to strengthen service brand personalities. In particular, the level of influence on the service brand personality by physical environment differs depending on service category or dimension, which indicates that there is a need to apply a different style of management to a different service category or dimension. It signifies that there needs to be a brand strategy established in order to positively influence the relationship with consumers by utilizing an appropriate brand personality factor depending on different characteristics by service category or dimension. 5) The service brand personalities influenced on the repurchase intention. Especially, the largest influence was made in the sophistication dimension of service brand personality scale; the unique and characteristically appropriate arrangement of physical environment will make customers stay in the service environment for a long time and will lead to give a positive influence on the repurchase intention. 6) The store environment factors influenced on the repurchase intention. Particularly, the largest influence was made on the social factors of store environment. The most intriguing finding is that the service factor among all other environment factors gives the biggest influence to the repurchase intention in most of all service types except fast-food stores. Such result indicates that the customers pay attention to how much the employees try to provide a quality service when they make an evaluation on the service brand. At the same time, it also indicates that the personal factor is directly transmitted to the construction of brand personality. The employees' attitude and behavior are the determinants to establish a service brand personality in the process of enhancing service interface. Hence, there should be a reinforced search for a method to efficiently manage the service staff who has a direct contact with customers in order to make an affirmative improvement of the customers' brand evaluation at the service interface. The findings suggest several managerial implications. 1) Results from the empirical study indicated that store environment factors have a strong positive impact on a service brand personality. To increase customers' repurchase intention of a service brand, the management is required to effectively manage store environment factors and create a friendly brand personality based on the corresponding service environment. 2) Mangers and researchers must understand and recognize that the store environment elements are important marketing tools, and that brand personality influences on consumers' repurchase intention. Based on such result of the study, a service brand could be utilized as an efficient measure to achieve a differentiation by enforcing the elements that are most influential among all other store environments for each service category. Therefore, brand personality established involving various store environments will further reinforce the relationship with customers through the elevated brand identification of which utilization to induce repurchase decision can be used as an entry barrier. 3) The study identified the store environment as a component of service brand personality for the store's effective communication with consumers. For this, all communication channels should be maintained with consistency and an integrated marketing communication should be executed to efficiently approach to a larger number of customers. Mangers and researchers must find strategies for aligning decisions about store environment elements with the retailers' marketing and store personality objectives. All ambient, design, and social factors need to be orchestrated so that consumers can take an appropriate store personality. In this study, the induced results from the previous studies were extended to the service industry so as to identify the customers' decision making process that leads to repurchase intention and a result similar to those of the previous studies. The findings suggested several theoretical and managerial implications. However, the situation that only one service brand served as the subject of analysis for each service category, and the situation that correlations among store environment elements were not identified, as well as the problem of representation in selection of samples should be considered and supplemented in the future when further studies are conducted. In addition, various antecedents and consequences of brand personality must be looked at in the aspect of the service environment for further research.

  • PDF

A Hybrid SVM Classifier for Imbalanced Data Sets (불균형 데이터 집합의 분류를 위한 하이브리드 SVM 모델)

  • Lee, Jae Sik;Kwon, Jong Gu
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.125-140
    • /
    • 2013
  • We call a data set in which the number of records belonging to a certain class far outnumbers the number of records belonging to the other class, 'imbalanced data set'. Most of the classification techniques perform poorly on imbalanced data sets. When we evaluate the performance of a certain classification technique, we need to measure not only 'accuracy' but also 'sensitivity' and 'specificity'. In a customer churn prediction problem, 'retention' records account for the majority class, and 'churn' records account for the minority class. Sensitivity measures the proportion of actual retentions which are correctly identified as such. Specificity measures the proportion of churns which are correctly identified as such. The poor performance of the classification techniques on imbalanced data sets is due to the low value of specificity. Many previous researches on imbalanced data sets employed 'oversampling' technique where members of the minority class are sampled more than those of the majority class in order to make a relatively balanced data set. When a classification model is constructed using this oversampled balanced data set, specificity can be improved but sensitivity will be decreased. In this research, we developed a hybrid model of support vector machine (SVM), artificial neural network (ANN) and decision tree, that improves specificity while maintaining sensitivity. We named this hybrid model 'hybrid SVM model.' The process of construction and prediction of our hybrid SVM model is as follows. By oversampling from the original imbalanced data set, a balanced data set is prepared. SVM_I model and ANN_I model are constructed using the imbalanced data set, and SVM_B model is constructed using the balanced data set. SVM_I model is superior in sensitivity and SVM_B model is superior in specificity. For a record on which both SVM_I model and SVM_B model make the same prediction, that prediction becomes the final solution. If they make different prediction, the final solution is determined by the discrimination rules obtained by ANN and decision tree. For a record on which SVM_I model and SVM_B model make different predictions, a decision tree model is constructed using ANN_I output value as input and actual retention or churn as target. We obtained the following two discrimination rules: 'IF ANN_I output value <0.285, THEN Final Solution = Retention' and 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn.' The threshold 0.285 is the value optimized for the data used in this research. The result we present in this research is the structure or framework of our hybrid SVM model, not a specific threshold value such as 0.285. Therefore, the threshold value in the above discrimination rules can be changed to any value depending on the data. In order to evaluate the performance of our hybrid SVM model, we used the 'churn data set' in UCI Machine Learning Repository, that consists of 85% retention customers and 15% churn customers. Accuracy of the hybrid SVM model is 91.08% that is better than that of SVM_I model or SVM_B model. The points worth noticing here are its sensitivity, 95.02%, and specificity, 69.24%. The sensitivity of SVM_I model is 94.65%, and the specificity of SVM_B model is 67.00%. Therefore the hybrid SVM model developed in this research improves the specificity of SVM_B model while maintaining the sensitivity of SVM_I model.

Construction and Application of Intelligent Decision Support System through Defense Ontology - Application example of Air Force Logistics Situation Management System (국방 온톨로지를 통한 지능형 의사결정지원시스템 구축 및 활용 - 공군 군수상황관리체계 적용 사례)

  • Jo, Wongi;Kim, Hak-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.77-97
    • /
    • 2019
  • The large amount of data that emerges from the initial connection environment of the Fourth Industrial Revolution is a major factor that distinguishes the Fourth Industrial Revolution from the existing production environment. This environment has two-sided features that allow it to produce data while using it. And the data produced so produces another value. Due to the massive scale of data, future information systems need to process more data in terms of quantities than existing information systems. In addition, in terms of quality, only a large amount of data, Ability is required. In a small-scale information system, it is possible for a person to accurately understand the system and obtain the necessary information, but in a variety of complex systems where it is difficult to understand the system accurately, it becomes increasingly difficult to acquire the desired information. In other words, more accurate processing of large amounts of data has become a basic condition for future information systems. This problem related to the efficient performance of the information system can be solved by building a semantic web which enables various information processing by expressing the collected data as an ontology that can be understood by not only people but also computers. For example, as in most other organizations, IT has been introduced in the military, and most of the work has been done through information systems. Currently, most of the work is done through information systems. As existing systems contain increasingly large amounts of data, efforts are needed to make the system easier to use through its data utilization. An ontology-based system has a large data semantic network through connection with other systems, and has a wide range of databases that can be utilized, and has the advantage of searching more precisely and quickly through relationships between predefined concepts. In this paper, we propose a defense ontology as a method for effective data management and decision support. In order to judge the applicability and effectiveness of the actual system, we reconstructed the existing air force munitions situation management system as an ontology based system. It is a system constructed to strengthen management and control of logistics situation of commanders and practitioners by providing real - time information on maintenance and distribution situation as it becomes difficult to use complicated logistics information system with large amount of data. Although it is a method to take pre-specified necessary information from the existing logistics system and display it as a web page, it is also difficult to confirm this system except for a few specified items in advance, and it is also time-consuming to extend the additional function if necessary And it is a system composed of category type without search function. Therefore, it has a disadvantage that it can be easily utilized only when the system is well known as in the existing system. The ontology-based logistics situation management system is designed to provide the intuitive visualization of the complex information of the existing logistics information system through the ontology. In order to construct the logistics situation management system through the ontology, And the useful functions such as performance - based logistics support contract management and component dictionary are further identified and included in the ontology. In order to confirm whether the constructed ontology can be used for decision support, it is necessary to implement a meaningful analysis function such as calculation of the utilization rate of the aircraft, inquiry about performance-based military contract. Especially, in contrast to building ontology database in ontology study in the past, in this study, time series data which change value according to time such as the state of aircraft by date are constructed by ontology, and through the constructed ontology, It is confirmed that it is possible to calculate the utilization rate based on various criteria as well as the computable utilization rate. In addition, the data related to performance-based logistics contracts introduced as a new maintenance method of aircraft and other munitions can be inquired into various contents, and it is easy to calculate performance indexes used in performance-based logistics contract through reasoning and functions. Of course, we propose a new performance index that complements the limitations of the currently applied performance indicators, and calculate it through the ontology, confirming the possibility of using the constructed ontology. Finally, it is possible to calculate the failure rate or reliability of each component, including MTBF data of the selected fault-tolerant item based on the actual part consumption performance. The reliability of the mission and the reliability of the system are calculated. In order to confirm the usability of the constructed ontology-based logistics situation management system, the proposed system through the Technology Acceptance Model (TAM), which is a representative model for measuring the acceptability of the technology, is more useful and convenient than the existing system.

Social Network Analysis for the Effective Adoption of Recommender Systems (추천시스템의 효과적 도입을 위한 소셜네트워크 분석)

  • Park, Jong-Hak;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.305-316
    • /
    • 2011
  • Recommender system is the system which, by using automated information filtering technology, recommends products or services to the customers who are likely to be interested in. Those systems are widely used in many different Web retailers such as Amazon.com, Netfix.com, and CDNow.com. Various recommender systems have been developed. Among them, Collaborative Filtering (CF) has been known as the most successful and commonly used approach. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. However, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting in advance whether the performance of CF recommender system is acceptable or not is practically important and needed. In this study, we propose a decision making guideline which helps decide whether CF is adoptable for a given application with certain transaction data characteristics. Several previous studies reported that sparsity, gray sheep, cold-start, coverage, and serendipity could affect the performance of CF, but the theoretical and empirical justification of such factors is lacking. Recently there are many studies paying attention to Social Network Analysis (SNA) as a method to analyze social relationships among people. SNA is a method to measure and visualize the linkage structure and status focusing on interaction among objects within communication group. CF analyzes the similarity among previous ratings or purchases of each customer, finds the relationships among the customers who have similarities, and then uses the relationships for recommendations. Thus CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. Under the assumption that SNA could facilitate an exploration of the topological properties of the network structure that are implicit in transaction data for CF recommendations, we focus on density, clustering coefficient, and centralization which are ones of the most commonly used measures to capture topological properties of the social network structure. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. We explore how these SNA measures affect the performance of CF performance and how they interact to each other. Our experiments used sales transaction data from H department store, one of the well?known department stores in Korea. Total 396 data set were sampled to construct various types of social networks. The dependant variable measuring process consists of three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used UCINET 6.0 for SNA. The experiments conducted the 3-way ANOVA which employs three SNA measures as dependant variables, and the recommendation accuracy measured by F1-measure as an independent variable. The experiments report that 1) each of three SNA measures affects the recommendation accuracy, 2) the density's effect to the performance overrides those of clustering coefficient and centralization (i.e., CF adoption is not a good decision if the density is low), and 3) however though the density is low, the performance of CF is comparatively good when the clustering coefficient is low. We expect that these experiment results help firms decide whether CF recommender system is adoptable for their business domain with certain transaction data characteristics.

Predicting the Performance of Recommender Systems through Social Network Analysis and Artificial Neural Network (사회연결망분석과 인공신경망을 이용한 추천시스템 성능 예측)

  • Cho, Yoon-Ho;Kim, In-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.159-172
    • /
    • 2010
  • The recommender system is one of the possible solutions to assist customers in finding the items they would like to purchase. To date, a variety of recommendation techniques have been developed. One of the most successful recommendation techniques is Collaborative Filtering (CF) that has been used in a number of different applications such as recommending Web pages, movies, music, articles and products. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. Broadly, there are memory-based CF algorithms, model-based CF algorithms, and hybrid CF algorithms which combine CF with content-based techniques or other recommender systems. While many researchers have focused their efforts in improving CF performance, the theoretical justification of CF algorithms is lacking. That is, we do not know many things about how CF is done. Furthermore, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting the performances of CF algorithms in advance is practically important and needed. In this study, we propose an efficient approach to predict the performance of CF. Social Network Analysis (SNA) and Artificial Neural Network (ANN) are applied to develop our prediction model. CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. SNA facilitates an exploration of the topological properties of the network structure that are implicit in data for CF recommendations. An ANN model is developed through an analysis of network topology, such as network density, inclusiveness, clustering coefficient, network centralization, and Krackhardt's efficiency. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Inclusiveness refers to the number of nodes which are included within the various connected parts of the social network. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. Krackhardt's efficiency characterizes how dense the social network is beyond that barely needed to keep the social group even indirectly connected to one another. We use these social network measures as input variables of the ANN model. As an output variable, we use the recommendation accuracy measured by F1-measure. In order to evaluate the effectiveness of the ANN model, sales transaction data from H department store, one of the well-known department stores in Korea, was used. Total 396 experimental samples were gathered, and we used 40%, 40%, and 20% of them, for training, test, and validation, respectively. The 5-fold cross validation was also conducted to enhance the reliability of our experiments. The input variable measuring process consists of following three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used Net Miner 3 and UCINET 6.0 for SNA, and Clementine 11.1 for ANN modeling. The experiments reported that the ANN model has 92.61% estimated accuracy and 0.0049 RMSE. Thus, we can know that our prediction model helps decide whether CF is useful for a given application with certain data characteristics.

An Understanding of the Archival Management in Early Joseon Dynasty (조선전기 기록관리 체계의 이해)

  • Oh, Hang-Nyeong
    • The Korean Journal of Archival Studies
    • /
    • no.17
    • /
    • pp.3-37
    • /
    • 2008
  • In this article, I outlined the archival management system in Early Joseon Dynasty and examined the characteristics of the system. At first, I explained the three aspects of the archival management; the memory of the past, the documentation of the contemporary, and the vision of the future through the documentation. Secondly, I tried to understand the character of the Veritable Record and its compilation by the concepts of archival science such as 'authenticity', 'reliability'. In the memory of the past, the History of a Dynasty(Koryo-Sa) and the Comprehensive History of Eastern Kingdom were included. The arrangement of the past was accompanied with the systematic study of the domestic and foreign histories. At the beginning of the state building, there was many practical need to the experiences of government and social re-construction. It was also the process of the legitimacy establishment of the new dynasty. And the Bureaucracy promoted the development of the records and archival management system because it needed the continuity and evidence of business. The dualistic structure of the records and archival management system was the most unique character of this age. The management of general administrative records was not different from the modern one. But the historical drafts and the compilation of Veritable record were different. Here, I had to examine the characteristics of these procedures by the concept authenticity, reliability, and custodianship. In doing so, I suggested the need of conceptualization of the historical terms such as 'the primary sources' and 'the secondary sources' in historical study. The archival concepts will be the most useful means to that issue. Through the memory of the past and the documentation of the contemporary, they made visions of the future, new vision of the Literati Governance. In this tradition, in spite of the revision of the Veritable records by the new changed political party, both the orignal and the revised remained as the comparative evidence for the future generation in the name of the Black-Red Revised History.