• Title/Summary/Keyword: Constructed wetlands design model

Search Result 5, Processing Time 0.021 seconds

Design Model of Constructed Wetlands for Water Quality Management of Non-point Source Pollution in Rural Watersheds (농촌유역의 비점원 오염 수질관리를 위한 인공습지 설계모형)

  • 최인욱;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.96-105
    • /
    • 2002
  • As an useful water purification system for non-point source pollution in rural watersheds, interests in constructed wetlands are growing at home and abroad. It is well known that constructed wetlands are easily installed, no special managemental needs, and more flexible at fluctuating influent loads. They have a capacity for purification against nutrient materials such as phosphorus and nitrogen causing eutrophication of lentic water bodies. The Constructed Wetland Design Model (CWDM), developed through this study is consisted mainly of Database System, Runoff-discharge Prediction Submodel, Water Quality Prediction Submodel, and Area Assessment Submodel. The Database System includes data of watershed, discharge, water quality, pollution source, and design factors for the constructed wetland. It supplies data when predicting water quality and calculating the required areas of constructed wetlands. For the assessment of design flow, the GWLF (Generalized Watershed Loading Function) is used, and for water quality prediction in streams estimating influent pollutant load, Water Quality Prediction Submodel, that is a submodel of DSS-WQMRA model developed by previous works is amended. The calculation of the required areas of constructed wetlands is achieved using effluent target concentrations and area calculation equations that developed from the monitoring results in the United States. The CWDM is applied to Bokha watershed to appraise its application by assessing design flow and predicting water quality. Its application is performed through two calculations: one is to achieve each target effluent concentrations of BOD, SS, T-N and T-P, the other is to achieve overall target effluent concentrations. To prove the validity of the model, a comparison of unit removal rates between the calculated one from this study and the monitoring result from existing wetlands in Korea, Japan and United States was made. As a result, the CWDM could be very useful design tool for the constructed wetland in rural watersheds and for the non-point source pollution management.

Development of Constructed Wetlands Design Model for Water Quality Management in Rural Basins (농촌유역의 수질관리를 위한 인공습지 설계모형 개발)

  • Choi, In-Uk;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.497-500
    • /
    • 2001
  • Constructed wetlands are among the recently proven efficient technologies for wastewater treatment. Compared to conventional treatment systems, constructed wetlands are low cost, are easily operated and maintained. Constructed wetlands are particularly sensitive to Nonp oint source pollution(NPSP) because they function as pollutant sinks. The objectives of this study were to review the necessary contents of survey and design factors for constructing constructed wetlands and develop a modified DSS-WQMRA model for design of constructed wetlands. From the results of the case studies, in order to attain BOD target water quality, 0.27%(SF), 0.66%(FWS) wetland area of the total basin is needed.

  • PDF

Treatment of Nutrients Using the Upflow Vegetated Filter (상향류식 수초여과지를 이용한 영양염류처리)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.12
    • /
    • pp.1287-1292
    • /
    • 2006
  • Constructed wetlands are well known as highly efficient system to treat wastewater from different sources. Among the constructed wetlands, upflow types of constructed wetlands have become a common selection of wastewater during the last decade. We conducted a pilot scale study at peen house on treating potential of nutrients by upflow vegetated filter(UVF) pilot wetland which was combined with hydrodynamic separator and used the cattail plant(Typha angustifolia), and operated with artificial nutrients influent. This study evaluate the performances of upflow vegetated fille, in removal of nutrients. The objectives of this study were two-fold: (i) to evaluate the nutrients removal performance of pilot-scale upflow vegetated filter, filled with a mixture of perlite and soil media and planted with cattails and (ii) to design of scale-up upflow vegetated filter using Froude number. Results indicated that, under the condition of the ranges of hydraulic surface load rate were $22.7{\pm}9.6\;m^3/m^2/day$, the average removal of $COD_{Mn}$, and TN, TP were 57.5%, 40.0% and 41.5%, respectively. Computational fluid dynamics, FLUENT 6.0 program was used to predict the distribution of velocity in UVF and hydrodynamic separator. Full scale UVF was designed using the Froude number scale-up method that was assumed geomertic similarity between model and prototype. Result shows that the UVF with 3 m diameter has capacity of design sewage flowrate 75 $m^3/day$.

Non-stationary frequency analysis of monthly maximum daily rainfall in summer season considering surface air temperature and dew-point temperature (지표면 기온 및 이슬점 온도를 고려한 여름철 월 최대 일 강수량의 비정상성 빈도해석)

  • Lee, Okjeong;Sim, Ingyeong;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • In this study, the surface air temperature (SAT) and the dew-point temperature (DPT) are applied as the covariance of the location parameter among three parameters of GEV distribution to reflect the non-stationarity of extreme rainfall due to climate change. Busan station is selected as the study site and the monthly maximum daily rainfall depth from May to October is used for analysis. Various models are constructed to select the most appropriate co-variate(SAT and DPT) function for location parameter of GEV distribution, and the model with the smallest AIC(Akaike Information Criterion) is selected as the optimal model. As a result, it is found that the non-stationary GEV distribution with co-variate of exp(DPT) is the best. The selected model is used to analyze the effect of climate change scenarios on extreme rainfall quantile. It is confirmed that the design rainfall depth is highly likely to increase as the future DPT increases.

A Transdisciplinary Approach for Water Pollution Control: Case Studies on Application of Natural Systems

  • Polprasert, Chongrak;Liamlaem, Warunsak
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.185-195
    • /
    • 2014
  • Despite the enormous technical and economic efforts to improve environmental conditions, currently about 40% of the global population (or 2 billion people) are still lack access to safe water supply and adequate sanitation facilities. Pollution problems and transmission of water- related diseases will continue to proliferate. The rapid population growth and industrialization will lead to a reduction of arable land, thus exacerbating the food shortage problems and threatening environmental sustainability. Natural systems in this context are a transdisciplinary approach which employs the activities of microbes, soil and/or plants in waste stabilisation and resource recovery without the aid of mechanical or energy-intensive equipments. Examples of these natural systems are: waste stabilisation ponds, aquatic weed ponds, constructed wetlands and land treatment processes. Although they require relatively large land areas, the natural systems could achieve a high degree of waste stabilisation and at the same time, yield potentials for waste recycling through the production of algal protein, fish, crops, and plant biomass. Because of the complex interactions occurring in the natural systems, the existing design procedures are based mainly on empirical or field experience approaches. An integrated kinetic model encompassing the activities of both suspended and biofilm bacteria and some important engineering parameters has been developed which could predict the organic matter degradation in the natural systems satisfactorily.