• Title/Summary/Keyword: Constructed wetland design

Search Result 54, Processing Time 0.023 seconds

Operating Status and Improvement Plans of Ten Wetlands Constructed in Dam Reservoirs in Korea (국내 10개 댐저수지 인공습지의 운영현황 및 개선방안)

  • Choi, Kwangsoon;Kim, Sea Won;Kim, Dong Sup;Lee, Yosang
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.431-440
    • /
    • 2014
  • To propose the improvement and management plans to strengthen the pollutant removal efficiency of dam reservoir's constructed wetlands(CWs), the operation status and configuration of CWs (including water depth, operational flow, water flow distribution, residence time, and pollutant removal efficiency, aspect ratio, open water/vegetation ratio etc.) were analyzed in 10 major wetlands constructed in dam reservoirs. The pollutant concentrations in the inflows of the studied CWs were lower than those of American and European constructed wetlands. Especially, organic matter concentrations in all of inflows were below 3 mg/L(as BOD) due to advanced treatment of sewage disposal plant and an intake of low concentration water during dry and normal seasons. The average removal efficiency of total nitrogen(TN) and total phosphorus(TP) for 10 CWs ranged from 7.6~67.6%(mean 24.9%) and -4.9~74.5%(mean 23.7%), respectively, showing high in wetlands treating municipal wastewater. On the other hand, the removal efficiency of BOD was generally low or negative with ranging from -133.3 to 41.7%. From the analysis of the operation status and configuration of CWs, it is suggested that the low removal efficiency of dam reservoir's CWs were caused by both structural (inappropriate aspect ratio, excessive open water area) and operational (neglecting water-level management, lack of facilities and operation for first flush treatment, lake of monitoring during rainy events) problems. Therefore, to enable to play a role as a reduction facility of non-point source(NPS) pollutants, an appropriate design and operation manuals for dam reservoir's CW is urgently needed. In addition, the monitoring during rainy events, when NPS runoff occur, must be included in operation manual of CW, and then the data obtained from the monitoring is considered in estimation of the pollutant removal efficiency by dam reservoir's CW.

Effects of Purifying Rice Paddy in Reducing Nutrient Loadings from Rice Paddy fields area using Free Range Ducks and Rice Bran (정화논에 의한 벼 친환경재배단지 발생 영양염류 저감효과)

  • Ko, Jee-Yeon;Lee, Jae-Saeng;Woo, Koan-Sik;Seo, Myung-Chul;Kang, Jong-Rae;Song, Seok-Bo;Oh, Byeong-Gun;Jung, Ki-Yeol;Yun, Eul-Soo;Choi, Kyung-Jin;Nam, Min-Hee;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.132-139
    • /
    • 2010
  • To manage the effluent nutrients amounts from rice paddy fields using free range ducks or rice bran, we evaluated the effects of a purifying paddy field which is no fertilizer, no pesticides, and dense rice seedling having a concept of constructed wetland. The experimental paddy field was located at downstream in the watershed of ducks using rice culture area in Milyang. The purifying paddy of land design were treated with seeding method, and vegetation type. As land design, direct seeding on plane, and direct seeding on high-ridge field in 2007. Planting rice only, and planting rice with water hyacinth were treated as vegetation type in purifying paddy in 2008. The purifying paddy fields were effective to reduce amount of T-N and T-P contents in effluent to 33.2~45.3%, and 53.1~55.4%, respectively. The direct seeding on high-ridge treatment, having long residence time of effluent water was more effective than plane plot as T-N 0.29 $g^{-1}m^{-2}d^{-1}$, and T-P 0.031 $g^{-1}m^{-2}d^{-1}$. The planting rice with water hyacinth treatment was effective than planting rice only as T-N 0.23 $g^{-1}m^{-2}d^{-1}$, and T-P 0.049 $g^{-1}m^{-2}d^{-1}$. The optimum area of purifying paddy field to treats all effluent were found out 3.2~4.7% of rice culture area using free range ducks, and rice bran at upper stream.

Conceptual Design of Constructed Wetlands to Treat Acid Mine Drainage from the Dalsung W-CU Mine, Korea (달성중석광산(達城重石鑛山) 산성폐수(酸性廢水) 처리(處理)를 위(爲)한 인공소택지(人工沼澤池) 개념(槪念) 설계(設計))

  • Hong, Yong-Kook;Filipek, L.;Na, Hyun-Joon
    • Economic and Environmental Geology
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 1996
  • Sulfate reduction and the precipitation of metal sulfides may have great potential to improve water quality of mine effluents in wetland treatment systems. Laboratory experiments using sulfate reducing bacteria (SRB) and limestone to treat effluents from the abandoned Dalsung tungsten-copper mine show that encouraging results, that have been attributed to sulfate reduction. Fe, Al, Cd, Cu and Zn are reduced to below detection limits with $99{\sim}100%$ metal removal rates, Mn is reduced by at least 90% to below 8.0 mg/l, and the pH is raised from 5.12 to 7.60 after 53 days of experiments. In the staged design, laboratory experiments are initiated to determine what would be reasonable substrate materials for remediation of the mine effluents. A substrate mixture containing 70% oak compost and 30% mushroom compost maintains $0.03{\sim}0.04mM$ of lactate, which provides good condition for the SRB granule. A downflow SRB wetland system is proposed as follows : 1) The lower part of the treatment system consists with a 25 cm thick layer of high quality (above 95% of $CaCO_3$) of limestone; 2) The geotextile (geonet) is recommended to be spread on the limestone bed to prevent clogging the limestones with the substrates; 3) The mixture of substrates with 70% oak and 30% spent mushroom composts, and SRB granules overlain on top of the geonet with 25 cm height. The sizes of the passive treatment systems are calculated according to metal loading and permeability criteria : 1) $220m^3$ ($15{\times}15{\times}1m$) for -1 level effluents; 2) $28m^3$ ($5.3{\times}5.3{\times}1m$) for -2 level; and 3) $2700m^3$ ($52{\times}52{\times}1m$) for the -3 level. The -3 level system needs to be broken down into 5 to 15 cells.

  • PDF

A Study on the Paleotopographic and Structural Analyses of Cherwon Castle in Taebong (태봉 철원도성의 고지형과 구조 분석 연구)

  • HEO, Uihaeng;YANG, Jeongseok
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.38-55
    • /
    • 2021
  • Cherwon Castle is located in Pungcheonwon, Cherwon, in the center of the Korean Peninsula. Currently, it is split across the Demilitarized Zone (DMZ) between the two Koreas. It attracts attention as a symbol of inter-Korean reconciliation and as cultural heritage that serves as data in making important policy decisions on the DMZ. Despite its importance, however, there has not been sufficient investigation and research done on Cherwon Castle. This is due to the difficulty involved in investigation and research and is caused by the site's inaccessibility. As a solution, the current investigative methods in satellite and aerial archeology can be applied to interpret and analyze the structure of Cherwon Castle and the features of its inner space zoning. Cherwon Castle was built on the five flat hills that begin in the northern mountainous hills and stretch to the southwest. The inner and outer walls were built mainly on the hilly ridges, and the palace wall was built surrounding a flat site that was created on the middle hill. For each wall, the sites of the old gates, which were erected in various directions , have been identified. They seem to have been built to fit the direction of buildings in the castle and the features of the terrain. The castle was built in a diamond shape. The old sites of the palace and related buildings and landforms related to water drainage were identified. It was verified that the roads and the gates were built to run from east to west in the palace. In the spaces of the palace and the inner castle, flat sites were created to fit different landforms, and building sites were arranged there. Moreover, the contour of a reservoir that is believed to be the old site of a pond has been found; it lies on the vertical extension of the center line that connects the palace and the inner castle. Between the inner castle and the outer castle, few vestiges of old buildings were found, although many flat sites were discovered. Structurally, Cherwon Castle is rotated about nine degrees to the northeast, forming a planar rectangle. The planar structure derives from the castle design that mimics the hilly landform, and the bending of the southwestern wall also attests to the intention of the architects to avoid the wetland. For now, it is impossible to clearly describe the functions and characters of the building sites inside the castle. However, it is believed that the inner castle was marked out for space for the palace and government offices, while the space between the outer and inner castle was reserved as the living space for ordinary people. The presence of the hilly landform diminishes the possibility that a bangri (grid) zoning system existed. For some of the landforms, orderly zoning cannot be ruled out, as flat areas are commonly seen. As surveys have yet to be conducted on the different castles, the time when the walls were built and how they were constructed cannot be known. Still, the claim to that the castle construction and the structuring of inner spaces were inspired by the surrounding landforms is quite compelling.