• Title/Summary/Keyword: Constructability

Search Result 356, Processing Time 0.018 seconds

Study on Structural Stability Analysis of Excavation Stage Considering Excavation Process and Supporting Materials in Room-and-Pillar Underground Space (격자형 지하공간에서 굴착 공정과 지보재를 고려한 굴착 단계별 구조 안정성 해석 연구)

  • Soon-Wook, Choi;Soo-Ho, Chang;Tae-Ho, Kang;Chulho, Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.21-29
    • /
    • 2022
  • The room-and-pillar method or grid-type underground space is a method of forming a space by excavating the excavation part at regular intervals so that it is orthogonal and using natural rock mass as a structure. Such excavation may appear different in size from the excavation stage where the maximum displacement occurs depending on the excavation direction and sequence. In this study, considering the installation of support materials such as shotcrete and rock bolts for the optimal design of the excavation process, the safety and constructability of the design and construction of the grid-type underground space under specific ground conditions were analytically reviewed. The ground conditions were set using an numerical method, and the stress at pillar and displacement at center of room were considered for each excavation stage and construction type under a constant surcharge. The height of the space was 8m, which was set higher than the size of a general office, and was reviewed in consideration of equipment and plant facilities. In addition, the degree of displacement control according to the installation of support materials was reviewed in consideration of shotcrete and rock bolts.

Evaluation of the Effect of Waveform Micropiles on Reinforcement of Foundation Structures Through Field Load Tests (현장 재하시험을 통한 파형 마이크로파일의 기초보강 효과 분석)

  • Baek, Sung-Ha;Han, Jin-Tae;Kim, Seok-Jung;Kim, Joonyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.3
    • /
    • pp.29-40
    • /
    • 2023
  • In this study, we investigated the reinforcing effects of waveform micropiles in a stratigraphic setting comprising buried soil, weathered soil, and weathered rock. We conducted a series of field load tests and determined that waveform micropiles exhibited sufficient bearing capacity through frictional resistance in the soil layer and demonstrated favorable constructability in conditions with deep bedrock layers. Moreover, the vertical stiffness of waveform micropiles was approximately 2.2 times higher than that of conventional micropiles when subjected to the same design load. Pile group load tests comprising conventional and waveform micropiles showed that micropiles with higher stiffness carried a greater proportion of the load. Although there was no significant difference in the bearing capacity between conventional and waveform micropiles under the same design load, waveform micropiles with higher stiffness showed a load-carrying capacity 1.7 to 3.2 times greater than that of conventional micropiles. These findings suggest that waveform micropiles can be effectively used for foundation reinforcement and reduce the risk of foundation failure when increased loads due to modifications such as expansion remodeling are expected.

Shear Strengthening Effect on Reinforced Concrete Beams Strengthened by Vertical Slit Type Steel Plates (수직 Slit형(形) 강판으로 전단보강된 철근콘트리트 보의 전단보강효과)

  • Lee, Choon-Ho;Kwon, Ki-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.195-204
    • /
    • 2009
  • Application of steel plates is one of widely used methods for shear strengthening of reinforced concrete beams that are insufficient of shear capacity. While the existing method applying solid steel plates provides good shear rigidity, however, it is concerned by brittle bond failure patterns, inefficient material usage, and low constructability. The use of strap type steel plates has also shortcomings of low strenthening effect due to small interface bonding area and ununified behavior between plates and main body. Therefore, this study aims to introduce the shear strengthening method using slit type steel plate, which can solve out the problems aforementioned, and to verify its strengthening effects on shear capacity. A total of 13 specimens strengthened by slit type steel plates were fabricated with primary test parameters of plate width, slit spacing, and plate thickness. The test results from this study were also compared to those from the existing research on RC beams strengthened by strap type steel plates, and the strengthening effects on shear capacity of specimens having bonded slit type steel plates were quantitatively analyzed. The test results showed that the RC beams strengthened by slit type steel plates had greater shear capacities than those with strap type steel plates, which is considered to be the effects of improved composite behavior and larger interface bonding area in the RC beams strengthened by the slit type steel plates.

Development of BIM Utilization Level Evaluation Model in Construction Management Company (건설사업관리기업의 BIM 활용수준 평가 모형 개발)

  • Jeong, Seo-Hee;Kim, Gwang-Hee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.4
    • /
    • pp.24-33
    • /
    • 2024
  • Recently, as smart construction has become more active, construction companys are evaluating their smart construction capabilities in order to transform into smart construction companies. However, the revitalization of smart construction doesn't only apply to construction companies, the level of utilization of all participants, including owners, designers, construction project managers, and construction company, must be improved. Therefore, this study aims to present a model that evaluate the building information modeling (BIM) utilization level for measuring the BIM utilization level of construction management companies in executing construction project management. In this study, an AHP questionnaire survey targeting BIM practitioners to calculate the weight of each BIM utilization item and score it to construct evaluation model and evaluate it by applying it to construction management companies are conducted. As a result of the evaluation using model, there were differences between companies in the number of BIM users, and in the qualitative evaluation, it is mainly used for interference review, constructability review, and design change management. Therefore, in order to revitalize BIM, it is believed that it is necessary to strengthen BIM utilization ability through separate training for construction manager (CMr) and to present clear utilization standards and scope of work for BIM utilization in performing construction management tasks. Consequently, evaluating more construction management companies using the model presented in this study will result in the transition of CM companies to smart construction and revitalization of BIM adoption.

Applicability of Partial Post-Tension Method for Deflection Control of Reinforced Concrete Slabs (RC슬래브의 처짐제어를 위한 상향긴장식 부분PT공법의 적용)

  • Lee, Deuck-Hang;Kim, Kang-Su;Kim, Sang-Sik;Kim, Yong-Nam;Lim, Joo-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.347-358
    • /
    • 2009
  • Recently, it is getting into a good situation for the flat-plate slab system to be applied. The flat-plate slab without beam, however, is often too weak to control deflection properly compared to other typical slab-beam structures, for which the post-tension method is generally regarded as one of best solutions. The post-tension (PT) method can effectively control deflection without increase of slab thickness. Despite this good advantage, however, the application of PT method has been very limited due to cost increase, technical problems, and lack of experiences. Therefore, in order to reduce difficulties on applying full PT method under the current domestic circumstances and to enhance constructability of PT system, this research proposed the partial PT method with top jacking anchorage applied in a part of span as need. For the top jacking anchorage system, the efficiency of deflection control shall be considered in detail because it can vary widely depending on the location of anchorage that can be placed anywhere as need, and tensile stresses induced at back of the anchorage zone also shall be examined. Therefore, in this study, analysis were performed on the efficiency of deflection control depending on the location of anchorage and on tensile stresses or forces using finite element method and strut and tie model in the proposed top jacking anchorage system. The proposed jacking system were also applied to the floor slabs at a construction site to investigate its applicability and the analysis results of slab behavior were compared to the measured values obtained from the PT slab constructed by the partial PT method. The result of this study indicates that the partial PT method can be very efficiently applied with little cost increase to control deflection and tensile stresses in the region as a need basis where problem exists.

An Experimental Study on the Pore Structure and Thermal Properties of Lightweight Foamed Concrete by Foaming Agent Type (기포제 종류에 따른 경량기포콘크리트의 기포구조 및 열적특성에 관한 실험적 연구)

  • Kim, Jin-Man;Choi, Hun-Gug;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.63-73
    • /
    • 2009
  • Recently, the use of lightweight panels in building structures has been increasing. Of the various lightweight panel types, styrofoam sandwich panels are inexpensive and are excellent in terms of their insulation capacity and their constructability. However, sandwich panels that include organic material are quite vulnerable to fire, and thus can numerous casualties in the event of a fire due to the lack of time to vacate and their emission of poisonous gas. On the other hand, lightweight foamed concrete is excellent, both in terms of its insulation ability and its fire resistance, due to its Inner pores. The properties of lightweight concrete is influenced by foaming agent type. Accordingly, this study investigates the insulation properties by foaming agent type, to evaluate the possibility of using light-weight foamed concrete instead of styrene foam. Our research found thatnon-heating zone temperature of lightweight foamed concrete using AP (Aluminum Powder) and FP (animal protein foaming agent) are lower than that of light-weight foamed concrete using AES (alkyl ether lactic acid ester). Lightweight foamed concrete using AES and FP satisfied fire performance requirements of two hours at a foam ratio 50, 100. Lightweight foamed concrete using AP satisfied fire performance requirements of two hours at AP ratio 0.1, 0.15. The insulation properties were better in closed pore foamed concrete by made AP, FP than with open pore foamed concrete made using AES.