• Title/Summary/Keyword: Constraints to the Transmission

Search Result 292, Processing Time 0.025 seconds

A Nash Bargaining Solution of Electric Power Transactions Reflecting Transmission Pricing in the Competitive Electricity Market (송전선이용료를 반영한 전력거래의 내쉬협상게임 해법)

  • Gang, Dong-Ju;Kim, Bal-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.311-316
    • /
    • 2002
  • It has been a basic model for the present electric power industry that more than two generators compete, and thereby the market clearing price and the generation schedules are determined through the bid process. In order for this paradigm to be applicable to real electric power systems and markets, it is necessary to reflect many physical and economic constraints related to frequency and transmission in the dispatching schedule. The paper presents an approach to deriving a Nash bargaining solution in a competitive electricity market where multiple generators are playing with the system operator who mitigates the transmission congestion to minimize the total transaction cost. In this study, we take the effect of the line flows and the role of system operator into the Game. Finally, a case study has been demonstrated to verify the proposed cooperative game.

Study on the Estimation of Seasonal Ambient Current for the Application of Ambient Adjusted Line Rating(AAR) in Overhead Transmission Lines Using Risk Tolerance(RT) Method (가공송전선로의 AAR 적용 시 Risk Tolerance 분석을 이용한 계절별 최대 허용전류 산정 및 적용에 관한 연구)

  • Lee, Jaegul;Bae, Youngjae;Song, Jiyoung;Shin, Jeonghoon;Kim, Yonghak;Kim, Taekyun;Yoon, Yongbeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.7-15
    • /
    • 2017
  • Ambient Adjusted line Rating(AAR) method for overhead transmission lines considering Risk Tolerance(RT) was proposed in this paper. AAR is suitable for system operators to plan their operation strategy and maintenance schedule because this can be designed as a seasonal line rating. Several candidate transmission lines are chosen to apply the proposed method in the paper. As a result, it is shown that system reliability was significantly enhanced through maximizing transfer capability, solving the system constraints.

Implementation of the Adaptive Line Equalizer for a Digital Subscriber Loop Transmission System Operating at 400Kb/s (400Kb/s급 디지털 가입자 전송 시스템에 적합한 적응형 선로 등화기의 구현)

  • Youm, Heung Youl;Kim, Jae Guen;Cho, Kyu Seob
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.387-393
    • /
    • 1987
  • The introduction of a digiral subscriber loop transmission system necessitates an optimized line interface solution. To meet this objective an adaptive line equalizer has been developed. The equalizer can be compensated up to 42 dB line loss at 200KHz, and operated up to 3.2 Km transmission length (0.4 mm\ulcornercable)at a rate of 400Kb/s. This has been builted using a variable \ulcorner equalizer to compensate a frequency-attenuation characteristics of metallic cable, an AGC (automatic gain control) circuits with simple control algorithm, and various filters to minimize a transmission constraints over subscriber loop. The purpose of this paper is to present a short description of a design of the adaptive line equalizer with a summary of implementation results. Some design concepts and considerations which results in an implementation of the equalizer are also given.

  • PDF

A Geometrical Approach to the Characteristic Analysis of Parallel Mechanism for Planar Task (평면 작업용 병렬 메카니즘의 특성 해석을 위한 기하학적 접근)

  • Song, Nak-Yoon;Cho, Hwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.158-166
    • /
    • 1998
  • This paper presents a geometrical approach to the characteristic analysis of parallel mechanism with free joints intended for use as a planar task robot. Solution of the forward and inverse kinematic problems are described. Because the mechanism has only three degree-of-freedom output, constraint equations must be generated to describe the inter-relationship between actuated joints and free joints so as to describe the position and orientation of the moving platform. Once these constraints are incorporated into the kinematics model, a constrained Jacobian matrix is obtained. and it is used for the solution of the forward kinematic equations by Newton-Raphson technique. Another Jacobian matrix was derived to describe the interrelationship between actuated joints and moving platform. The stiffness, velocity transmission ratio, force transmission ratio and dexterity of the mechanism are then determined based on this another Jacobian matrix. The geometrical construction of the mechanism for the best performance was investigated using the characteristic analysis.

  • PDF

An Optimal Rescheduling of Power Generation to Constrain the EM Field Emitted from Power Transmission Lines (송전선로에서 발생하는 전자계 제약을 고려한 발전력의 최적 재분배)

  • Kim, Jong-Hyeong;Sin, Myeong-Cheol;Ra, Wan-Su;Park, Il-Han
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.10
    • /
    • pp.464-471
    • /
    • 2001
  • Power utilities must satisfy both supplying high quality power economically and reducing EMF levels. In general, in order to reduce EMF levels from transmission line, it is effective to install shielding wires, configure wires with minimal space or modify structure of other conductors, etc., but these techniques require much cost and time. To some extent, the EMF levels associated with critical transmission lines can be reduced by redistributing the scheduled power generation, since it can change the power flows. There this technique can be readily applied without modifying other structures. This paper considers the OPF(Optimal Power Flow) with the EMF constraints in transmission lines to determine the power generation redistributions and demonstrates numerically the effectiveness of the approach.

  • PDF

Integrated Generation and Transmission Expansion Planning Using Generalized Bender’s Decomposition Method

  • Kim, Hyoungtae;Lee, Sungwoo;Kim, Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2228-2239
    • /
    • 2015
  • A novel integrated optimization method based on the Generalized Bender’s Decomposition (GBD) is proposed to combine both generation and transmission expansion problems. Most of existing researches on the integrated expansion planning based on the GBD theory incorporate DC power flow model to guarantee the convergence and improve the computation time. Inherently the GBD algorithm based on DC power flow model cannot consider variables and constraints related bus voltages and reactive power. In this paper, an integrated optimization method using the GBD algorithm based on a linearized AC power flow model is proposed to resolve aforementioned drawback. The proposed method has been successfully applied to Garver’s six-bus system and the IEEE 30-bus system which are frequently used power systems for transmission expansion planning studies.

Transmission Network Expansion Planning Using Risk Level Improvement Index (위험도 개선 지수를 이용한 송전계통 계획 수립에 관한 연구)

  • Kim, Sung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.752-757
    • /
    • 2014
  • This paper attempts to evaluate the impact of power plant penetration on constraints of a transmission network and proposes a methodology based on risk level, which can evaluate the condition of the network and facilities intuitionally. Furthermore, based on this methodology, RLII(Risk Level Improvement Index) is proposed in order to establish comprehensive TNEP(Transmission Network Expansion Planning) from a viewpoint of ISO(Independent System Operator). In order to verify the proposed methods in this paper, real power systems in Incheon and Shiheung areas, south Korea are applied to the case study.

Efficient Peer Assignment for Low-Latency Transmission of Scalable Coded Images

  • Su, Xiao;Wang, Tao
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.79-88
    • /
    • 2008
  • In this paper, we propose efficient peer assignment algorithms for low-latency transmission of scalable coded images in peer-to-peer networks, in which peers may dynamically join and leave the networks. The objective of our algorithm is to minimize the transmission time of a requested image that is scalable coded. When an image is scalable coded in different bit rates, the bit stream encoded in a lower bit rate is a prefix subset of the one encoded in a higher bit rate. Therefore, a peer with the same requested image coded in any bit rate, even when it is different from the requested rate, may work as a supplying peer. As a result, when a scalable coded image is requested, more supplying peers can be found in peer-to-peer networks to help with the transfer. However, the set of supplying peers is not static during transmission, as the peers in this set may leave the network or finish their transmission at different times. The proposed peer assignment algorithms have taken into account the above constraints. In this paper, we first prove the existence of an optimal peer assignment solution for a simple identity permutation function, and then formulate peer assignment with this identity permutation as a mixed-integer programming problem. Next, we discuss how to address the problem of dynamic peer departures during image transmission. Finally, we carry out experiments to evaluate the performance of proposed peer assignment algorithms.

Optimal design of sandwich panel for transmission noise reduction (투과 소음 저감을 위한 샌드위치 패널 최적 설계)

  • Yoon, Hong Geun;Lee, Jin Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.116-118
    • /
    • 2014
  • A shape optimization problem is formulated to optimally design aluminum sandwich panel, which is used for high speed railway vehicle. An aluminum volume used in the panel is selected as a design objective with constraints on the stiffness and the transmission loss value. The formulated shape optimization problem is solved for a well -selected initial shape. The stiffness and transmission loss value of the obtained optimal shape are compared with those of the previously-reported panel.

  • PDF

Resource Allocation for Cooperative Relay based Wireless D2D Networks with Selfish Users

  • Niu, Jinxin;Guo, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.1996-2013
    • /
    • 2015
  • This paper considers a scenario that more D2D users exist in the cell, they compete for cellular resources to increase their own data rates, which may cause transmission interference to cellular users (CU) and the unfairness of resource allocation. We design a resource allocation scheme for selfish D2D users assisted by cooperative relay technique which is used to further enhance the users' transmission rates, meanwhile guarantee the QoS requirement of the CUs. Two transmission modes are considered for D2D users: direct transmission mode and cooperative relay transmission mode, both of which reuses the cellular uplink frequency resources. To ensure the fairness of resource distribution, Nash bargaining theory is used to determine the transmission mode and solve the bandwidth allocation problem for D2D users choosing cooperative relay transmission mode, and coalition formation game theory is used to solve the uplink frequency sharing problem between D2D users and CUs through a new defined "Selfish order". Through theoretical analysis, we obtain the closed Nash bargaining solution under CUs' rate constraints, and prove the stability of the formatted coalition. Simulation results show that the proposed resource allocation approach achieves better performance on resource allocation fairness, with only little sacrifice on the system sum rates.