• Title/Summary/Keyword: Constraint Force Design Method

Search Result 34, Processing Time 0.018 seconds

Modeling of Hot-Coil/Cassette Dynamics and Design of Cassette Wedge Angle (핫코일-카세트 동역학 모델링 및 지지경사각 설계)

  • Hong, Sup;Hong, S.W.;Hong, S.Y.;Kim, H.J.;Kim, J.H.;Park, Y.M.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.70-75
    • /
    • 1997
  • This paper concerns with a safe and efficient transportation method of hot-coils on cargo ship. An automatic loading and unloading system of hot-coils by cassettes, which secure the geometrically unstable cargo, hot-coil, by supporting with wedges on both sides, is considered efficient and profitable. Safety of hot-coil on cassette and subsequently safety of total cargo ship are directly affected by the wedge angle of cassette. For optimal design of the cassette wedge angle, a dynamic model of hot-coil/cassette cargo is developed with constraint of no relative motions between the coil and the cassette. Force equilibrium conditions between resultant alternating inertia forces on hot-coil due to motions of cargo ship in waves and reactions forces from cassette wedge surfaces are derived and consequently a numerical simulation code is implemented. Cassette wedge angle of 37 degree is taken as optimal by considering dynamic stability of hot-coil and strength of cassette structure. Performance of the designed cassette wedge angle is investigated by scaled bench test.

  • PDF

Optimum Design of Two Hinged Steel Arches with I Sectional Type (SUMT법(法)에 의(依)한 2골절(滑節) I형(形) 강재(鋼材) 아치의 최적설계(最適設計))

  • Jung, Young Chae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.65-79
    • /
    • 1992
  • This study is concerned with the optimal design of two hinged steel arches with I cross sectional type and aimed at the exact analysis of the arches and the safe and economic design of structure. The analyzing method of arches which introduces the finite difference method considering the displacements of structure in analyzing process is used to eliminate the error of analysis and to determine the sectional force of structure. The optimizing problems of arches formulate with the objective functions and the constraints which take the sectional dimensions(B, D, $t_f$, $t_w$) as the design variables. The object functions are formulated as the total weight of arch and the constraints are derived by using the criteria with respect to the working stress, the minimum dimension of flange and web based on the part of steel bridge in the Korea standard code of road bridge and including the economic depth constraint of the I sectional type, the upper limit dimension of the depth of web and the lower limit dimension of the breadth of flange. The SUMT method using the modified Newton Raphson direction method is introduced to solve the formulated nonlinear programming problems which developed in this study and tested out throught the numerical examples. The developed optimal design programming of arch is tested out and examined throught the numerical examples for the various arches. And their results are compared and analyzed to examine the possibility of optimization, the applicablity, the convergency of this algorithm and with the results of numerical examples using the reference(30). The correlative equations between the optimal sectional areas and inertia moments are introduced from the various numerical optimal design results in this study.

  • PDF

The Optimal Configuration of Arch Structures Using Force Approximate Method (부재력(部材力) 근사해법(近似解法)을 이용(利用)한 아치구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;Ro, Min Lae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.95-109
    • /
    • 1993
  • In this study, the optimal configuration of arch structure has been tested by a decomposition technique. The object of this study is to provide the method of optimizing the shapes of both two hinged and fixed arches. The problem of optimal configuration of arch structures includes the interaction formulas, the working stress, and the buckling stress constraints on the assumption that arch ribs can be approximated by a finite number of straight members. On the first level, buckling loads are calculated from the relation of the stiffness matrix and the geometric stiffness matrix by using Rayleigh-Ritz method, and the number of the structural analyses can be decreased by approximating member forces through sensitivity analysis using the design space approach. The objective function is formulated as the total weight of the structures, and the constraints are derived by including the working stress, the buckling stress, and the side limit. On the second level, the nodal point coordinates of the arch structures are used as design variables and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, the problem of optimization can be reduced to unconstrained optimal design problem which is easy to solve. Numerical comparisons with results which are obtained from numerical tests for several arch structures with various shapes and constraints show that convergence rate is very fast regardless of constraint types and configuration of arch structures. And the optimal configuration or the arch structures obtained in this study is almost the identical one from other results. The total weight could be decreased by 17.7%-91.7% when an optimal configuration is accomplished.

  • PDF

A Study on the Construction Cost Index for Calculating Conceptual Estimation : 1970-1999 (개략공사비 산출을 위한 공사비 지수 연구 : 1970-1999)

  • Nam, Song Hyun;Park, Hyung Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.527-534
    • /
    • 2020
  • A significant factor in construction work is cost. At early- and advanced-stage design, costs should be calculated to derive realistic cost estimates according to unit price calculation. Based on these estimates, the economic feasibility of construction work is assessed, and whether to proceed is determined. Through the Korea Institute of Civil Engineering and Building Technology, the construction cost index has been calculated by indirect methods after both the producer price index and construction market labor have been reprocessed to easily adjust the price changes of construction costs in Korea, and the Institute has announced it since 2004. As of January 2000, however, the construction cost index was released, and this has a time constraint on the correction and use of past construction cost data to the present moment. Variables were calculated to compute a rough construction cost that utilized past construction costs through surveys of the producer price index and the construction market labor force consisting of the construction cost index. After significant independent variables among the many variables were selected through correlation analysis, the construction cost index from 1970 to 1999 was calculated and presented through multiple regression analysis. This study therefore has prominent significance in terms of proposing a method of calculating rough construction costs that utilize construction costs that pre-date the 2000s.