• Title/Summary/Keyword: Constraint Force

Search Result 191, Processing Time 0.023 seconds

Study on the fire resistance of castellated composite beams with ortho-hexagonal holes and different beam-end constraints

  • Junli Lyu;Encong Zhu;Rukai Li;Bai Sun;Zili Wang
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.539-551
    • /
    • 2023
  • In order to study the fire resistance of castellated composite beams with ortho-hexagonal holes and different beam-end restraints, temperature rise tests with constant load were conducted on full-scale castellated composite beams with ortho-hexagonal holes and hinge or rigid joint constraints to investigate the temperature distribution, displacement changes and failure patterns of castellated composite beams with two different beam-end constraints during the whole course of fire. The results show that (1) During the fire, the axial pressure and horizontal expansion deformation generated in the rigid joint constrained composite beam were larger than those in the hinge joint constrained castellated composite beam, and their maximum horizontal expansion displacements were 30.2 mm and 17.8 mm, respectively. (2) After the fire, the cracks on the slab surface of the castellated composite beam with rigid joint constraint were more complicated than hinge restraint, and the failure more serious; the lower flange and web at the ends of the castellated steal beams with hinge and rigid joint constraint produced serious local buckling, and the angles of the ortho-hexagonal holes at the support cracked; the welds at both ends of the castellated composite beam with rigid joint constraint cracked. (3) Based on the simplified calculation method of solid-web composite beam, considering the effect of holes on the web, this paper calculated the axial force and displacement of the beam-end constrained castellated composite beams under fire. The calculation results agreed well with the test results.

Crack-tip Stress Field of Fully Circumferential Surface Cracked Pipe Under Combined Tension and Thermal Loads (원주방향 부분 관통 균열이 존재하는 직관에 인장하중과 열하중의 복합하중이 가해지는 경우의 균열 선단 응력장)

  • Je, Jin Ho;Kim, Dong Jun;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1207-1214
    • /
    • 2014
  • Under excessive plasticity, the fracture toughness of a material depends on its size and geometry. Under fully yielded conditions, the stresses in a material near its crack tip are not unique but rather depend on the geometry. Therefore, the single-parameter J-approach is limited to a high-constraint crack geometry. The JQ theory has been proposed for establishing the crack geometry constraints. This approach assumes that the crack-tip fields have two degrees of freedom. In this study, the crack-tip stress field of a fully circumferential surface-cracked pipe under combined loads is investigated on the basis of the JQ theory by using finite element analysis. The combined loads are a tensile axial force and the thermal gradient in the radial direction. Q-stresses of the crack geometry and its loading state are used to determine the constraint effects. The constraint effects of secondary loading are found to be greater than those of primary loading. Therefore, thermal shock is believed to be the most severe loading condition of constraint effects.

Reducing Separation Force for Projection Stereolithography based on Constrained Surface Technique (규제액면기법의 전사방식 광조형 시스템을 위한 이형력 감소)

  • Kim, Hye Jung;Ha, Young Myoung;Park, In Baek;Kim, Min Sub;Jo, Kwang Ho;Lee, Seok Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.1001-1006
    • /
    • 2013
  • Projection-based stereolithography is divided into constrained-surface and free-surface type according to controlling liquid layer. The constrained-surface type has a uniform layer thickness due to the use of a projection window, which covers the pattern generator such as liquid crystal display. However, the adhered resin on the projection window causes trouble and requires great separation force when the cured layer is separated from the window. To minimize the separation force, we developed a system to measure the separation force. The influence of material covering the pattern generator and the resin temperature is investigated in the system. Several structures according to the resin temperature and the velocity of z-axis elevation are compared. As a result, the fabrication condition to minimize the separation force reduces the process time.

Optimal Force Distribution for Compliance Control of Multi-legged Walking Robots (다각 보행로보트의 순응 제어를 위한 힘의 최적 분배)

  • Ra, In-Hwan;Yang, Won-Young;Chung, Tae-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.874-876
    • /
    • 1995
  • Force and compliance control has been used in the control of legged walking vehicles to achieve superior terrain adaptability on rough terrains. The compliance control requires distribution of the vehicle load over the supporting legs. However, the constraint equations for ground reaction forces of supporting legs are generally underdetermined, allowing an infinite number of solutions. Thus, it is possible to apply an optimization criteria in solving the force setpoint problem. It has been observed that the previous force setpoint optimization methods sometimes cause a system stability problem and/or the load distribution among supporting legs is not well balanced due to a memory effect on the solution trajectory, This paper presents an iterative force setpoint method to solve this problem using an interpolation technique. By simulation it was shown that an excessive load unbalance among supporting legs and the memory effect in the force trajectory are alleviated much with the proposed method.

  • PDF

PID-Supervision Hybrid Controller for Robust Control of DC Motor (DC 전동기의 강인 제어를 위한 PID-관리 복합형 제어기)

  • Jeon, Jeong-Chay;Oh, Hun;Park, Wal-Seo;Cho, Hyeon-Seob;Ryu, In-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.244-246
    • /
    • 1998
  • Robust control for DC motor is needed according to the highest precision of industrial automation. However when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, PID-supervision hybrid control method for motor control system is presented. If the PID control system (without the supervisory controller) is stable in the sense that the error is inside the constraint set, the supervisory control is idle. If the error hits the boundary of the constraint, the supervisory controller begins operation to force the error back to the constraint set. We prove that the PID-supervision hybrid control system is globally stable in the sense that the error is guaranteed to be within the tolerance limits specified by the system designer.

  • PDF

The Speed Control of a DC Servo Motor by the PID Self Tuning Control Method (PID-자기동조 제어방식에 의한 DC 서보 전동기의 속도제어)

  • Cho, Hyun-Seob;Ku, Gi-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1560-1564
    • /
    • 2008
  • Robust control for DC motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. In this paper, PID-Self Tuning control method for motor control system as a compensation method solving this problem is presented. If the PID control system is stable in the sense that the error is inside the constraint set, the supervisory control is idle. If the error hits the boundary of the constraint, the supervisory controller begins operation to force the error back to the constraint set. We prove that the PID-Self Tuning control system is globally stable in the sense that the error is guaranteed to be within the tolerance limits specified by the system designer.

Robust Speed Control of DC Motor Using PID-Supervision Hybrid Controller (PID-관리 복합형 제어기를 이용한 직류 전동기의 강인한 속도제어)

  • 전정채;조현섭;박왈서
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.70-74
    • /
    • 1998
  • Robust control for DC motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID contoller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. In this paper, PID-supervision hybrid control methods for motor control system (without the supervisory controller) is stable in the sense that the error is inside the constraint set, the supervisory control is idle. If the error hits the boundary of the constraint, the supervisory controller beings operation to force the error back to the constraint set. We prove that the PID-supervision hybrid control system is globally stable in the sense that the error is guaranteed to be within the tolerance limits specified by the system designer.

  • PDF

FxLMS Algorithm for Active Vibration Control of Structure By Using Inertial Damper with Displacement Constraint (관성형 능동 댐퍼를 이용한 구조물 진동 제어에서 댐퍼 질량의 변위 제한을 고려한 FxLMS 알고리즘)

  • Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.545-557
    • /
    • 2021
  • Engine is the main source of vibration that generates unwanted noise and vibration of vehicle chassis. Especially, in submarine applications, radiation of noise signatures can be detected at some distance away from the submarine using a sonar array. Thus quiet operation is crucial for submarine's survivability. This study addresses reduction of the force transmissibility originating from engines and transmitted to hull through engine mounts. An inertial damper, as an actuator of hybrid mount system, is addressed to reduce even further the level of vibration. Narrow band FxLMS algorithms are broadly used to cancel the vibration of engine mount because of its excellent performance of canceling narrow band noise. However, in real active dampers, the maximum displacement of damper mass is kinematically restricted. When the control input signal from the FxLMS algorithm exceeds this limitation, the damper mass will collide with the mechanical stops and results in many problems. Originated from these, a modified narrow band FxLMS algorithm based on the equalizer technique with the maximum allowable displacement of active damper mass is proposed in this study. Some simulation results showed that the propose algorithm is effective to suppress vibration of engine mount while ensuring given displacement constraint.

Streamlined Shape of Endothelial Cells

  • Chung, Chan-Il;Chang, Jun-Keun;Min, Byoung-Goo;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.861-866
    • /
    • 2000
  • Flow induced shape change is important for spatial interpretation of vascular response and for understanding of mechanotransduction in a single cell. We investigated the possible shapes of endothelial cell (EC) in a mathematical model and compared these with experimental results. The linearized analytic solution from the sinusoidal wavy wall and Stokes flow was applied with the constraint of EC volume. The three dimensional structure of the human umbilical vein endothelial cell was visualized in static culture or after various durations of shear stress (20 $dyne/cm^2$ for 5, 10, 20, 40, 60, 120min). The shape ratio (width: length: height) of model agreed with that of the experimental result, which represented the drag force minimizing shape of stream-lining. EC would be streamlined in order to accommodate to the shear flow environmented by active reconstruction of cytoskeletons and membranes through a drag force the sensing mechanism.

  • PDF

Optimal Vibration Control of Rigid Plate Elastically Supported at the Edges (끝단이 탄성 지지된 강체판의 최적진동제어)

  • Lee, Seong-Ki;Yun, Shin-Il;Han, Sang-Bo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.828-833
    • /
    • 2003
  • Rigid plate elastically supported at the edges is modeled and the performance of the optimal vibration control under sinusoidal excitation is tested. The controller based on the linear quadratic regulator with output feedback is designed to control the multi-degree of freedom vibration. Relative weighting parameters are considered as design constraints to determine the limitation of maximum control force and state parameters. Control force calculated by proportional output feedback of the displacement and velocity is used to suppress the vibration induced by the sinusoidal external force. The active vibration control of vibrating plate by the LQR controller is examined through the numerical simulations that show the effectiveness of optimal control scheme on the three degrees of freedom structure.

  • PDF