• Title/Summary/Keyword: Constrained normal displacement

Search Result 7, Processing Time 0.019 seconds

Evaluation of Shear Behavior on Sands According to Confinement Condition in Direct Shear Test (직접전단실험 시 구속조건에 따른 모래의 전단거동 평가)

  • Byun, Yonghoon;Kim, Youngho;Song, Myungjun;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.5-13
    • /
    • 2013
  • Soils around a pile are highly constrained when the vertical load is applied to the pile. However, the conventional direct shear test cannot evaluate the shear strength of the soils under the normal confinement condition. The goal of this study is to evaluate the shear behaviors according to the normal displacement confinement condition including free normal displacement (FND) and constrained normal displacement (CND) during direct shearing. Jumunjin sands were prepared at the different relative densities and loaded at the different normal stresses. The specimens were sheared according to the normal confinement conditions. Experimental results show that shear strengths obtained by the CND tests are higher than those obtained by the FND tests. In addition, for the constrained normal displacement condition, the increment of shear strength increases with the increase of relative density, while the increment of shear strength decreases with the initial normal stress. This study suggests that the effect of confinement condition on the shear strength should be considered when the stability of constrained soils is analyzed.

A mathematical model to recover missing monitoring data of foundation pit

  • Liu, Jiangang;Zhou, Dongdong;Liu, Kewen
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.275-286
    • /
    • 2015
  • A new method is presented to recover missing deformation data of lateral walls of foundation pit when the monitoring is interrupted; the method is called Dynamic Mathematical Model - Parameter Interpolation. The deformation of lateral walls of foundation pit is mainly affected by the type of supporting structure and the situation of constraints, therefore, this paper mainly studies the two different kinds of variation law of deep horizontal displacement when the lateral walls are constrained or not, proposes two dynamic curve models of normal distribution type and logarithmic type, deals with model parameters by interpolating and obtains the parameters of missing data, then missing monitoring data could be Figured out by these parameters. Compared with the result from the common average method which is used to recover missing data, in the upper 2/3 of the inclinometer tube, the result by using this method is closer to the actual monitoring data, in the lower 1/3 part of the inclinometer tube, the result from the common average method is closer to the actual monitoring data.

Dynamic Characteristics of Cylindrical Composite Panels With Surface Damping Treatments Using Full Layerwise Theory (완전층별변위이론에 근거한 표면감쇠처리된 원통형 복합적층 패널의 동적특성)

  • Seong, Tae-Hong;Lee, In;Oh, Il-Kwon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.29-32
    • /
    • 2005
  • Based on the full layerwise displacement shell theory, vibration and damping characteristics of cylindrical sandwich panels are investigated. The transverse shear deformation and the normal strain are fully taken into account for structural damping modelling. Modal damping factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich beams. Present results shows that full layerwise theory can accurately predict vibration and damping characteristics of cylindrical composite panels with surface damping treatments and constrained layer damping. The viscoelastic materials depending on elevated temperature environment and exciting frequencies can be fully considered.

  • PDF

Vibration Analyses of Cylindrical Hybrid Panel with Viscoelastic Layer Based on Layerwise Finite Elements (층별변위 유한요소법에 기초한 점탄성층을 갖는 원통형 복합적층 패널의 진동해석)

  • Oh, Il-Kwon;Cheng, Tai-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1361-1369
    • /
    • 2005
  • Based on a full layerwise displacement shell theory, the nitration and damping characteristics of cylindrical sandwiched panels with viscoelastic layers are investigated. The transverse shear deformation and the normal strain of the cylindrical hybrid panels are fully taken into account for the structural damping modelling. The present finite element model Is formulated by using Hamilton's virtual work principle and the cylindrical curvature of hybrid panels is exactly modeled. Modal loss factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich panels. Present results show that the full layerwise finite element method can accurately predict the vibration and damping characteristics of the cylindrical hybrid panels with surface damping treatments and constrained layer damping.

Vibration Analyses of Cylindrical Hybrid Panel With Viscoelastic Layer Based On Layerwise Finite Elements (층별변위 유한요소법에 기초한 점탄성층을 갖는 원통형 복합적층 패널의 진동해석)

  • Oh, Il-Kwon;Cheong, Tai-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.772-778
    • /
    • 2005
  • Based on a full layerwise displacement shell theory, the vibration and damping characteristics of cylindrical sandwiched panels with viscoelastic layers are investigated. The transverse shear deformation and the normal strain of the cylindrical hybrid panels are fully taken into account for the structural damping modelling. The present finite element model is formulated by using Hamilton's virtual work principle and the cylindrical curvature of hybrid panels is exactly modeled. Modal loss factors and frequency response functions are analyzed for various structural parameters of cylindrical sandwich panels. Present results show that the full layerwise finite element method can accurately predict the vibration and damping characteristics of the cylindrical hybrid panels with surface damping treatments and constrained layer damping.

  • PDF

Predicting Factors on Ankle Stability - Mortise Angle and Fibular Length - (족관절 안정성의 예상인자 -격자각과 비골의 길이-)

  • Lee, Sang-Wook;Koh, Sang-Bong;Shin, Min-Cheul;Lee, Byoung-Kwan
    • Journal of Korean Foot and Ankle Society
    • /
    • v.8 no.1
    • /
    • pp.11-15
    • /
    • 2004
  • Purpose: The aim of this study was to investigate the usefulness of mortise angle and fibular length measured in radiologic findings in predicting the ankle stability. Materials and Methods: One hundred cases fifty cases were randomly selected volunteers with normal ankle function and the other fifty cases were randomly selected patients whose ankle were treated in our hospital and who were followed for over 1 years with good results. A specific experimental fixture were made to get the even AP and lateral view and objective stress view. Results: The mortise angle and fibular length was not statistically significant to the degree of talar tilt angle under valgus or varus stress and that of displacement under anterior or posterior stress. Conclusion: The mortise angle and fibular length was not the objective predicting factors on the ankle stability. Maintenance of constrained talus in dynamic status is most important factors in determining the ankle stability.

  • PDF

Grain-Based Distinct Element Modeling of Thermoshearing of Rock Fracture: DECOVALEX-2023 Task G (입자기반 개별요소모델을 이용한 암석 균열의 Thermoshearing 거동 해석: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook, Park;Li, Zhuang;Jeong Seok, Yoon;Chan-Hee, Park;Changlun, Sun;Changsoo, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.568-585
    • /
    • 2022
  • In the present study, we proposed a numerical method for simulating thermally induced fracture slip using a grain-based distinct element model (GBDEM). As a part of DECOVALEX-2023, the thermo-mechanical loading test on a saw-cut rock fracture conducted at the Korea Institute of Civil Engineering and Building Technology was simulated. In the numerical model, the rock sample including a saw-cut fracture was represented as a group of random Voronoi polyhedra. Then, the coupled thermo-mechanical behavior of grains and their interfaces was calculated using 3DEC. The key concerns focused on the temperature evolution, thermally induced principal stress increment, and fracture normal and shear displacements under thermo-mechanical loading. The comparisons between laboratory experimental results and the numerical results revealed that the numerical model reasonably captured the heat transfer and heat loss characteristics of the rock specimen, the horizontal stress increment due to constrained displacement, and the progressive shear failure of the fracture. However, the onset of the fracture slip and the magnitudes of stress increment and fracture displacement showed discrepancies between the numerical and experimental results. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study.