• 제목/요약/키워드: Constrained motion

검색결과 194건 처리시간 0.024초

A New Approach for Motion Control of Constrained Mechanical Systems: Using Udwadia-Kalaba′s Equations of Motion

  • Joongseon Joh
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.61-68
    • /
    • 2001
  • A new approach for motion control of constrained mechanical systems is proposed in this paper. The approach uses a new equations of motion which is proposed by Udwadia and Kalaba and named Udwadia-Kalaba's equations of motion in this paper. This paper reveals that the Udwadia-Kalaba's equations of motion is more adequate to model constrained mechanical systems rather than the famous Lagrange's equations of motion at least for control purpose. The proposed approach coverts most of constraints including holonomic and nonholonomic constraints. Comparison of simulation results of two systems which are well-known in the literature show the superiority of the proposed approach. Furthermore, a special constrained mechanical system which includes nonlinear generalized velocities in its constraint equations, which has been considered to be difficult to control, can be controlled easily. It shows the possibility of the proposed approach to being a general framework for motion control of constrained mechanical systems with various kinds of constraints.

  • PDF

제한 동작 로봇의 강성도 적응성을 갖는 하이브리드 동적 제어에 관한 연구 (Hybrid dynamic control approach for constrained robot motion control with stiffness adaptability)

  • 임미섭;임준홍
    • 제어로봇시스템학회논문지
    • /
    • 제5권6호
    • /
    • pp.705-713
    • /
    • 1999
  • In this paper, we propose a new motion and force control methodology for constrained robots as an approach of hybrid discrete-continuous dynamical system. The hybrid dynamic system modeling of robotic manipulation tasks with constraints is presented, and the hybrid system control architecture for unconstrained and constrained motion system with parametric uncertainties is synthesized. The optimal reference stiffness of robot manipulator is generated by the hybrid automata as a discrete state system and the control behavior of constrained system which has poor modeling information and time-varying constraint function is improved by the constrained robots as a continuous state system. The performance of the proposed constrained motion control system is successfully evaluated via experimental studies to the constraint tasks.

  • PDF

구속받는 3차원 유연 매니퓰레이터의 컴플라이언스 해석 (Compliance Analysis of Constrained Spatial Flexible Manipulators)

  • 김진수
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.91-96
    • /
    • 2006
  • The aim of this paper is to clarify the structural compliance of the constrained spatial flexible manipulator and to develop the force control by using the compliance of the links. Using the dependency of elastic deflections of links on contact force, vibrations for constrained vertical motion have been suppressed successfully by controlling the position of end-effector. However, for constrained horizontal motion, the vibrations cannot be suppressed by only controlling position of end-effector. We present the experimental results for constrained vertical motion, and constrained horizontal motion. Finally, a comparison between these results is presented to show the validity of link compliance.

Explicit Motion of Dynamic Systems with Position Constraints

  • Eun, Hee-Chang;Yang, Keun-Hyuk;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권4호
    • /
    • pp.538-544
    • /
    • 2003
  • Although many methodologies exist for determining the constrained equations of motion, most of these methods depend on numerical approaches such as the Lagrange multiplier's method expressed in differential/algebraic systems. In 1992, Udwadia and Kalaba proposed explicit equations of motion for constrained systems based on Gauss's principle and elementary linear algebra without any multipliers or complicated intermediate processes. The generalized inverse method was the first work to present explicit equations of motion for constrained systems. However, numerical integration results of the equation of motion gradually veer away from the constraint equations with time. Thus, an objective of this study is to provide a numerical integration scheme, which modifies the generalized inverse method to reduce the errors. The modified equations of motion for constrained systems include the position constraints of index 3 systems and their first derivatives with respect to time in addition to their second derivatives with respect to time. The effectiveness of the proposed method is illustrated by numerical examples.

Modal Analysis of Constrained Multibody Systems Undergoing Constant Accelerated Motions

  • Park, Dong-Hwan;Yoo, Hong-Hee
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1086-1093
    • /
    • 2004
  • The modal characteristics of constrained multibody systems undergoing constant accelerated motions are investigated in this paper. Relative coordinates are employed to derive the equations of motion, which are generally nonlinear in terms of the coordinates. The dynamic equilibrium position of a constrained multibody system needs to be obtained from the nonlinear equations of motion, which are then linearized at the dynamic equilibrium position. The mass and the stiffness matrices for the modal analysis can be obtained from the linearized equations of motion. To verify the effectiveness and the accuracy of the proposed method, two numerical examples are solved and the results obtained by using the proposed method are compared with those obtained by analytical and other numerical methods. The proposed method is found to be accurate as well as effective in predicting the modal characteristics of constrained multibody systems undergoing constant accelerated motions.

Dynamic Optimization Algorithm of Constrained Motion

  • Eun, Hee-Chang;Yang, Keun-Heok;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1072-1078
    • /
    • 2002
  • The constrained motion requires the determination of constraint force acting on unconstrained systems for satisfying given constraints. Most of the methods to decide the force depend on numerical approaches such that the Lagrange multiplier method, and the other methods need vector analysis or complicated intermediate process. In 1992, Udwadia and Kalaba presented the generalized inverse method to describe the constrained motion as well as to calculate the constraint force. The generalized inverse method has the advantages which do not require any linearization process for the control of nonlinear systems and can explicitly describe the motion of holonomically and/or nongolonomically constrained systems. In this paper, an explicit equation to describe the constrained motion is derived by minimizing the performance index, which is a function of constraint force vector, with respect to the constraint force. At this time, it is shown that the positive-definite weighting matrix in the performance index must be the inverse of mass matrix on the basis of the Gauss's principle and the derived differential equation coincides with the generalized inverse method. The effectiveness of this method is illustrated by means of two numerical applications.

Probability Constrained Search Range Determination for Fast Motion Estimation

  • Kang, Hyun-Soo;Lee, Si-Woong;Hosseini, Hamid Gholam
    • ETRI Journal
    • /
    • 제34권3호
    • /
    • pp.369-378
    • /
    • 2012
  • In this paper, we propose new adaptive search range motion estimation methods where the search ranges are constrained by the probabilities of motion vector differences and a search point sampling technique is applied to the constrained search ranges. Our new methods are based on our previous work, in which the search ranges were analytically determined by the probabilities. Since the proposed adaptive search range motion estimation methods effectively restrict the search ranges instead of search point sampling patterns, they provide a very flexible and hardware-friendly approach in motion estimation. The proposed methods were evaluated and tested with JM16.2 of the H.264/AVC video coding standard. Experiment results exhibit that with negligible degradation in PSNR, the proposed methods considerably reduce the computational complexity in comparison with the conventional methods. In particular, the combined method provides performance similar to that of the hybrid unsymmetrical-cross multi-hexagon-grid search method and outstanding merits in hardware implementation.

정합 오차 기준을 확장한 제한된 1비트 변환 알고리즘 기반의 움직임 예측 (Constrained One-Bit Transform based Motion Estimation using Extension of Matching Error Criterion)

  • 이상구;정제창
    • 방송공학회논문지
    • /
    • 제18권5호
    • /
    • pp.730-737
    • /
    • 2013
  • 본 논문은 정합 오차 기준을 확장한 제한된 1비트 변환 (Constrained One-Bit Transform : C1BT) 기반의 움직임 예측 알고리즘을 제안하였다. 제한된 1비트 변환 기반의 움직임 예측 알고리즘에서는 정합 오차 기준으로 기존의 움직임 예측 방법인 전역 탐색 알고리즘 (Full Search Algorithm: FSA)에서 사용되는 SAD (Sum of Absolute Differences) 대신 NNMP (Number of Non-Matching Points)를 사용하여 하드웨어 구현을 용이하게 하고 연산량을 크게 줄였으나 움직임 예측의 정확도를 감소시켰다. 이 점을 개선하고자 이 논문에서는 제한된 1비트 변환의 정합 오차 기준을 확장하여 움직임 예측의 정확도를 높이는 알고리즘을 제안하였고 이는 기존의 알고리즘과 비교한 결과 PSNR (Peak Signal to Nosie Ratio) 측면에서 더 우수한 성능을 보였다.

다관절 로봇 아암의 강인한 모션 제어방법에 관한 연구 (A Study on the Robust Motion Control Technology of Articulated Robot Arm)

  • 하언태;김현근
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.119-128
    • /
    • 2015
  • In this paper, we propose a new motion control technology to design robust control system of industrial robot. The system modeling of robotic manipulation tasks with constraints is presented, and the control architecture for unconstrained and constrained motion system with parametric uncertainties is synthesized. The optimal reference of robot manipulator is generated by the reference controller as a discrete state system and the control behavior of constrained system which has poor modeling information and time-invariant constraint function is improved motion control system is successfully evaluated by experiment to the desired tasks.

바퀴달린 로봇의 동적 제어 (Dynamic Control of a Robot with a Free Wheel)

  • 은희창;정동원
    • 한국정밀공학회지
    • /
    • 제15권3호
    • /
    • pp.127-132
    • /
    • 1998
  • Mobile wheeled robots are nonholonomically constrained systems. Generally, it is very difficult to describe the motion of mechanical systems with nonintegrable nonholonomic constraints. An objective of this study is to describe the motion of a robot with a free wheel. The motion of holonomically and/or nonholonomically constrained system can be simply determined by Generalized Inverse Method presented by Udwadia and Kalaba in 1992. Using the method, we describe the exact motion of the robot and determine the constraint force exerted on the robot for satisfying constraints imposed on it. The application illustrates the ease with which the Generalized Inverse Method can be utilized for the purpose of control of nonlinear system without depending on any linearization, maintaining precision tracking motion and explicit determination of control forces of nonholonomically constrained system.

  • PDF